Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205482008> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4205482008 abstract "Prediction of future movement of stock prices has been a subject matter of many research work. On one hand, we have proponents of the Efficient Market Hypothesis who claim that stock prices cannot be predicted, on the other hand, there are propositions illustrating that, if appropriately modeled, stock prices can be predicted with a high level of accuracy. There is also a gamut of literature on technical analysis of stock prices where the objective is to identify patterns in stock price movements and profit from it. In this work, we propose a hybrid approach for stock price prediction using five deep learning-based regression models. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, over a period of December 29, 2014 to July 31, 2020. Based on the NIFTY data during December 29, 2014 to December 28, 2018, we build two regression models using <i>convolutional neural networks</i> (CNNs), and three regression models using <i>long-and-short-term memory</i> (LSTM) networks for predicting the <i>open</i> values of the NIFTY 50 index records for the period December 31, 2018 to July 31, 2020. We adopted a multi-step prediction technique with <i>walk-forward validation</i>. The parameters of the five deep learning models are optimized using the grid-search technique so that the validation losses of the models stabilize with an increasing number of epochs in the model training, and the training and validation accuracies converge. Extensive results are presented on various metrics for all the proposed regression models. The results indicate that while both CNN and LSTM-based regression models are very accurate in forecasting the NIFTY 50 <i>open</i> values, the CNN model that previous one week’s data as the input is the fastest in its execution. On the other hand, the encoder-decoder convolutional LSTM model uses the previous two weeks’ data as the input is found to be the most accurate in its forecasting results." @default.
- W4205482008 created "2022-01-26" @default.
- W4205482008 creator A5044544477 @default.
- W4205482008 creator A5050768547 @default.
- W4205482008 creator A5073297073 @default.
- W4205482008 date "2021-09-27" @default.
- W4205482008 modified "2023-10-17" @default.
- W4205482008 title "Stock Price Prediction Using Deep Learning Models" @default.
- W4205482008 doi "https://doi.org/10.36227/techrxiv.16640197" @default.
- W4205482008 hasPublicationYear "2021" @default.
- W4205482008 type Work @default.
- W4205482008 citedByCount "0" @default.
- W4205482008 crossrefType "posted-content" @default.
- W4205482008 hasAuthorship W4205482008A5044544477 @default.
- W4205482008 hasAuthorship W4205482008A5050768547 @default.
- W4205482008 hasAuthorship W4205482008A5073297073 @default.
- W4205482008 hasBestOaLocation W42054820081 @default.
- W4205482008 hasConcept C10138342 @default.
- W4205482008 hasConcept C105795698 @default.
- W4205482008 hasConcept C108583219 @default.
- W4205482008 hasConcept C119857082 @default.
- W4205482008 hasConcept C149782125 @default.
- W4205482008 hasConcept C154945302 @default.
- W4205482008 hasConcept C162324750 @default.
- W4205482008 hasConcept C166957645 @default.
- W4205482008 hasConcept C200870193 @default.
- W4205482008 hasConcept C204036174 @default.
- W4205482008 hasConcept C205649164 @default.
- W4205482008 hasConcept C2779343474 @default.
- W4205482008 hasConcept C2780299701 @default.
- W4205482008 hasConcept C33923547 @default.
- W4205482008 hasConcept C41008148 @default.
- W4205482008 hasConcept C45804977 @default.
- W4205482008 hasConcept C83546350 @default.
- W4205482008 hasConcept C88389905 @default.
- W4205482008 hasConceptScore W4205482008C10138342 @default.
- W4205482008 hasConceptScore W4205482008C105795698 @default.
- W4205482008 hasConceptScore W4205482008C108583219 @default.
- W4205482008 hasConceptScore W4205482008C119857082 @default.
- W4205482008 hasConceptScore W4205482008C149782125 @default.
- W4205482008 hasConceptScore W4205482008C154945302 @default.
- W4205482008 hasConceptScore W4205482008C162324750 @default.
- W4205482008 hasConceptScore W4205482008C166957645 @default.
- W4205482008 hasConceptScore W4205482008C200870193 @default.
- W4205482008 hasConceptScore W4205482008C204036174 @default.
- W4205482008 hasConceptScore W4205482008C205649164 @default.
- W4205482008 hasConceptScore W4205482008C2779343474 @default.
- W4205482008 hasConceptScore W4205482008C2780299701 @default.
- W4205482008 hasConceptScore W4205482008C33923547 @default.
- W4205482008 hasConceptScore W4205482008C41008148 @default.
- W4205482008 hasConceptScore W4205482008C45804977 @default.
- W4205482008 hasConceptScore W4205482008C83546350 @default.
- W4205482008 hasConceptScore W4205482008C88389905 @default.
- W4205482008 hasLocation W42054820081 @default.
- W4205482008 hasOpenAccess W4205482008 @default.
- W4205482008 hasPrimaryLocation W42054820081 @default.
- W4205482008 hasRelatedWork W10939673 @default.
- W4205482008 hasRelatedWork W11008779 @default.
- W4205482008 hasRelatedWork W1315626 @default.
- W4205482008 hasRelatedWork W13380568 @default.
- W4205482008 hasRelatedWork W1339621 @default.
- W4205482008 hasRelatedWork W1688 @default.
- W4205482008 hasRelatedWork W177218 @default.
- W4205482008 hasRelatedWork W3006012 @default.
- W4205482008 hasRelatedWork W6156524 @default.
- W4205482008 hasRelatedWork W7175044 @default.
- W4205482008 isParatext "false" @default.
- W4205482008 isRetracted "false" @default.
- W4205482008 workType "article" @default.