Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205499184> ?p ?o ?g. }
- W4205499184 endingPage "e77" @default.
- W4205499184 startingPage "e69" @default.
- W4205499184 abstract "Empiric segmentation is a rapidly growing, learning health system approach that uses large health care system data sets to identify groups of high-risk patients who may benefit from similar interventions. We aimed to review studies that used data-driven approaches to segment high-risk patient populations and describe how their designs and findings can inform health care leaders who are interested in applying similar techniques to their patient populations.Structured literature review.We searched for original research articles published since 2000 that identified high-risk adult patient populations and applied data-driven analyses to segment the population. Two reviewers independently extracted study population source and criteria for high-risk designation, segmentation method, data types included, model selection criteria, and model results from the identified studies.Our search identified 224 articles, 12 of which met criteria for full review. Of these, 8 segmented high-risk patients and 4 segmented diagnoses without assigning patients to unique groups. Studies segmenting patients more often had clinically interpretable results. Common groups were defined by high prevalence of diabetes, cardiovascular disease, psychiatric conditions including substance use disorders, and neurologic disease (eg, stroke). Few studies incorporated patients' functional or social factors. Resulting patient and diagnosis clusters varied in ways closely linked to the model inputs, patient population inclusion criteria, and health care system context.Empiric segmentation can yield clinically relevant groups of patients with complex medical needs. Segmentation results are context dependent, suggesting the need for careful design and interpretation of segmentation models to ensure that results can inform clinical care and program design in the target setting." @default.
- W4205499184 created "2022-01-25" @default.
- W4205499184 creator A5006620042 @default.
- W4205499184 creator A5025905692 @default.
- W4205499184 creator A5032397893 @default.
- W4205499184 creator A5036532552 @default.
- W4205499184 date "2021-09-27" @default.
- W4205499184 modified "2023-09-26" @default.
- W4205499184 title "Empiric Segmentation of High-risk Patients: A Structured Literature Review" @default.
- W4205499184 cites W1787383574 @default.
- W4205499184 cites W1937340236 @default.
- W4205499184 cites W1994339511 @default.
- W4205499184 cites W2033609349 @default.
- W4205499184 cites W2069612116 @default.
- W4205499184 cites W2088931936 @default.
- W4205499184 cites W2092873805 @default.
- W4205499184 cites W2148951021 @default.
- W4205499184 cites W2149389691 @default.
- W4205499184 cites W2171466942 @default.
- W4205499184 cites W2197543014 @default.
- W4205499184 cites W2294397534 @default.
- W4205499184 cites W2346915478 @default.
- W4205499184 cites W2412152865 @default.
- W4205499184 cites W2557574586 @default.
- W4205499184 cites W2567397172 @default.
- W4205499184 cites W2724440900 @default.
- W4205499184 cites W2755070448 @default.
- W4205499184 cites W2783343302 @default.
- W4205499184 cites W2783570585 @default.
- W4205499184 cites W2789353899 @default.
- W4205499184 cites W2796420922 @default.
- W4205499184 cites W2806402813 @default.
- W4205499184 cites W2811280893 @default.
- W4205499184 cites W2892324789 @default.
- W4205499184 cites W2898856363 @default.
- W4205499184 cites W2902373250 @default.
- W4205499184 cites W2904716004 @default.
- W4205499184 cites W2909372389 @default.
- W4205499184 cites W2937897133 @default.
- W4205499184 cites W2971326641 @default.
- W4205499184 cites W2985434150 @default.
- W4205499184 cites W3000223871 @default.
- W4205499184 cites W3037221846 @default.
- W4205499184 doi "https://doi.org/10.37765/ajmc.2022.88752" @default.
- W4205499184 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35139299" @default.
- W4205499184 hasPublicationYear "2021" @default.
- W4205499184 type Work @default.
- W4205499184 citedByCount "1" @default.
- W4205499184 countsByYear W42054991842022 @default.
- W4205499184 crossrefType "journal-article" @default.
- W4205499184 hasAuthorship W4205499184A5006620042 @default.
- W4205499184 hasAuthorship W4205499184A5025905692 @default.
- W4205499184 hasAuthorship W4205499184A5032397893 @default.
- W4205499184 hasAuthorship W4205499184A5036532552 @default.
- W4205499184 hasBestOaLocation W42054991842 @default.
- W4205499184 hasConcept C118552586 @default.
- W4205499184 hasConcept C125308379 @default.
- W4205499184 hasConcept C142724271 @default.
- W4205499184 hasConcept C144133560 @default.
- W4205499184 hasConcept C151730666 @default.
- W4205499184 hasConcept C154945302 @default.
- W4205499184 hasConcept C160735492 @default.
- W4205499184 hasConcept C162324750 @default.
- W4205499184 hasConcept C162853370 @default.
- W4205499184 hasConcept C177713679 @default.
- W4205499184 hasConcept C27415008 @default.
- W4205499184 hasConcept C2779134260 @default.
- W4205499184 hasConcept C2779343474 @default.
- W4205499184 hasConcept C2908647359 @default.
- W4205499184 hasConcept C41008148 @default.
- W4205499184 hasConcept C50522688 @default.
- W4205499184 hasConcept C534262118 @default.
- W4205499184 hasConcept C71924100 @default.
- W4205499184 hasConcept C86803240 @default.
- W4205499184 hasConcept C89600930 @default.
- W4205499184 hasConcept C99454951 @default.
- W4205499184 hasConceptScore W4205499184C118552586 @default.
- W4205499184 hasConceptScore W4205499184C125308379 @default.
- W4205499184 hasConceptScore W4205499184C142724271 @default.
- W4205499184 hasConceptScore W4205499184C144133560 @default.
- W4205499184 hasConceptScore W4205499184C151730666 @default.
- W4205499184 hasConceptScore W4205499184C154945302 @default.
- W4205499184 hasConceptScore W4205499184C160735492 @default.
- W4205499184 hasConceptScore W4205499184C162324750 @default.
- W4205499184 hasConceptScore W4205499184C162853370 @default.
- W4205499184 hasConceptScore W4205499184C177713679 @default.
- W4205499184 hasConceptScore W4205499184C27415008 @default.
- W4205499184 hasConceptScore W4205499184C2779134260 @default.
- W4205499184 hasConceptScore W4205499184C2779343474 @default.
- W4205499184 hasConceptScore W4205499184C2908647359 @default.
- W4205499184 hasConceptScore W4205499184C41008148 @default.
- W4205499184 hasConceptScore W4205499184C50522688 @default.
- W4205499184 hasConceptScore W4205499184C534262118 @default.
- W4205499184 hasConceptScore W4205499184C71924100 @default.
- W4205499184 hasConceptScore W4205499184C86803240 @default.
- W4205499184 hasConceptScore W4205499184C89600930 @default.
- W4205499184 hasConceptScore W4205499184C99454951 @default.
- W4205499184 hasIssue "2" @default.