Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205514178> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4205514178 endingPage "790" @default.
- W4205514178 startingPage "785" @default.
- W4205514178 abstract "Brain is recognized as one of the complex organ of the human body. Abnormal formation of cells may affect the normal functioning of the brain. These abnormal cells may belong to category of benign cells resulting in low grade glioma or malignant cells resulting in high grade glioma. The treatment plans vary according to grade of glioma detected. This results in need of precise glioma grading. As per World Health Organization, biopsy is considered to be gold standard in glioma grading. Biopsy is an invasive procedure which may contains sampling errors. Biopsy may also contain subjectivity errors. This motivated the clinician to look for other methods which may overcome the limitations of biopsy reports. Machine learning and deep learning approaches using MRI is considered to be most promising alternative approach reported by scientist in literature. The presented work were based on the concept of AdaBoost approach which is an ensemble learning approach. The developed model was optimized w.r.t to two hyper parameters i.e. no. of estimators and learning rate keeping the base model fixed. The decision tree was us ed as a base model. The proposed developed model was trained and validated on BraTS 2018 dataset. The developed optimized model achieves reasonable accuracy in carrying out classification task i.e. high grade glioma vs. low grade glioma." @default.
- W4205514178 created "2022-01-25" @default.
- W4205514178 creator A5028274650 @default.
- W4205514178 creator A5040848437 @default.
- W4205514178 creator A5051512752 @default.
- W4205514178 creator A5061629635 @default.
- W4205514178 date "2019-04-15" @default.
- W4205514178 modified "2023-09-27" @default.
- W4205514178 title "Brain Tumor Classification into High Grade and Low Grade Gliomas" @default.
- W4205514178 cites W2099698084 @default.
- W4205514178 cites W2507318843 @default.
- W4205514178 cites W2614549267 @default.
- W4205514178 cites W2620727918 @default.
- W4205514178 cites W2751069891 @default.
- W4205514178 cites W2767128594 @default.
- W4205514178 cites W2802611745 @default.
- W4205514178 cites W2900530921 @default.
- W4205514178 cites W2901590470 @default.
- W4205514178 cites W2931870777 @default.
- W4205514178 cites W2946532344 @default.
- W4205514178 doi "https://doi.org/10.32628/ijsrset1962176" @default.
- W4205514178 hasPublicationYear "2019" @default.
- W4205514178 type Work @default.
- W4205514178 citedByCount "0" @default.
- W4205514178 crossrefType "journal-article" @default.
- W4205514178 hasAuthorship W4205514178A5028274650 @default.
- W4205514178 hasAuthorship W4205514178A5040848437 @default.
- W4205514178 hasAuthorship W4205514178A5051512752 @default.
- W4205514178 hasAuthorship W4205514178A5061629635 @default.
- W4205514178 hasConcept C105795698 @default.
- W4205514178 hasConcept C119857082 @default.
- W4205514178 hasConcept C126838900 @default.
- W4205514178 hasConcept C141404830 @default.
- W4205514178 hasConcept C154945302 @default.
- W4205514178 hasConcept C185429906 @default.
- W4205514178 hasConcept C18903297 @default.
- W4205514178 hasConcept C2775934546 @default.
- W4205514178 hasConcept C2776429142 @default.
- W4205514178 hasConcept C2777286243 @default.
- W4205514178 hasConcept C2778227246 @default.
- W4205514178 hasConcept C33923547 @default.
- W4205514178 hasConcept C41008148 @default.
- W4205514178 hasConcept C502942594 @default.
- W4205514178 hasConcept C71924100 @default.
- W4205514178 hasConcept C86803240 @default.
- W4205514178 hasConcept C95623464 @default.
- W4205514178 hasConceptScore W4205514178C105795698 @default.
- W4205514178 hasConceptScore W4205514178C119857082 @default.
- W4205514178 hasConceptScore W4205514178C126838900 @default.
- W4205514178 hasConceptScore W4205514178C141404830 @default.
- W4205514178 hasConceptScore W4205514178C154945302 @default.
- W4205514178 hasConceptScore W4205514178C185429906 @default.
- W4205514178 hasConceptScore W4205514178C18903297 @default.
- W4205514178 hasConceptScore W4205514178C2775934546 @default.
- W4205514178 hasConceptScore W4205514178C2776429142 @default.
- W4205514178 hasConceptScore W4205514178C2777286243 @default.
- W4205514178 hasConceptScore W4205514178C2778227246 @default.
- W4205514178 hasConceptScore W4205514178C33923547 @default.
- W4205514178 hasConceptScore W4205514178C41008148 @default.
- W4205514178 hasConceptScore W4205514178C502942594 @default.
- W4205514178 hasConceptScore W4205514178C71924100 @default.
- W4205514178 hasConceptScore W4205514178C86803240 @default.
- W4205514178 hasConceptScore W4205514178C95623464 @default.
- W4205514178 hasLocation W42055141781 @default.
- W4205514178 hasOpenAccess W4205514178 @default.
- W4205514178 hasPrimaryLocation W42055141781 @default.
- W4205514178 hasRelatedWork W10386318 @default.
- W4205514178 hasRelatedWork W11834073 @default.
- W4205514178 hasRelatedWork W1306977 @default.
- W4205514178 hasRelatedWork W13404154 @default.
- W4205514178 hasRelatedWork W13487282 @default.
- W4205514178 hasRelatedWork W14205060 @default.
- W4205514178 hasRelatedWork W2121556 @default.
- W4205514178 hasRelatedWork W7916693 @default.
- W4205514178 hasRelatedWork W9686068 @default.
- W4205514178 hasRelatedWork W9825711 @default.
- W4205514178 isParatext "false" @default.
- W4205514178 isRetracted "false" @default.
- W4205514178 workType "article" @default.