Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205516679> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4205516679 endingPage "3590" @default.
- W4205516679 startingPage "3575" @default.
- W4205516679 abstract "Most revolutionary applications extending far beyond smartphones and high configured mobile device use to the future generation wireless networks’ are high potential capabilities in recent days. One of the advanced wireless networks and mobile technology is 5G, where it provides high speed, better reliability, and amended capacity. 5 G offers complete coverage, which is accommodates any IoT device, connectivity, and intelligent edge algorithms. So that 5 G has a high demand in a wide range of commercial applications. Ambrosus is a commercial company that integrates block-chain security, IoT network, and supply chain management for medical and food enterprises. This paper proposed a novel framework that integrates 5 G technology, Machine Learning (ML) algorithms, and block-chain security. The main idea of this work is to incorporate the 5 G technology into Machine learning architectures for the Ambrosus application. 5 G technology provides continuous connection among the network user/nodes, where choosing the right user, base station, and the controller is obtained by using for ML architecture. The proposed framework comprises 5 G technology incorporate, a novel network orchestration, Radio Access Network, and a centralized distributor, and a radio unit layer. The radio unit layer is used for integrating all the components of the framework. The ML algorithm is evaluated the dynamic condition of the base station, like as IoT nodes, Ambrosus users, channels, and the route to enhance the efficiency of the communication. The performance of the proposed framework is evaluated in terms of prediction by simulating the model in MATLAB software. From the performance comparison, it is noticed that the proposed unified architecture obtained 98.6% of accuracy which is higher than the accuracy of the existing decision tree algorithm 97.1%." @default.
- W4205516679 created "2022-01-25" @default.
- W4205516679 creator A5008968533 @default.
- W4205516679 creator A5087482016 @default.
- W4205516679 date "2022-03-04" @default.
- W4205516679 modified "2023-10-07" @default.
- W4205516679 title "Enabling continuous connectivity services for ambrosus blockchain application by incorporating 5G-multilevel machine learning orchestrations" @default.
- W4205516679 cites W1520955558 @default.
- W4205516679 cites W2083313960 @default.
- W4205516679 cites W2103972037 @default.
- W4205516679 cites W2111085587 @default.
- W4205516679 cites W2132712787 @default.
- W4205516679 cites W2138020668 @default.
- W4205516679 cites W2312611768 @default.
- W4205516679 cites W2334917980 @default.
- W4205516679 cites W2343044157 @default.
- W4205516679 cites W2560486825 @default.
- W4205516679 cites W2602923095 @default.
- W4205516679 cites W2884378316 @default.
- W4205516679 cites W2926938737 @default.
- W4205516679 cites W2963049813 @default.
- W4205516679 cites W2998864442 @default.
- W4205516679 cites W3041540203 @default.
- W4205516679 cites W3103072945 @default.
- W4205516679 cites W3205707234 @default.
- W4205516679 cites W3211713681 @default.
- W4205516679 cites W4295021613 @default.
- W4205516679 doi "https://doi.org/10.3233/jifs-211745" @default.
- W4205516679 hasPublicationYear "2022" @default.
- W4205516679 type Work @default.
- W4205516679 citedByCount "0" @default.
- W4205516679 crossrefType "journal-article" @default.
- W4205516679 hasAuthorship W4205516679A5008968533 @default.
- W4205516679 hasAuthorship W4205516679A5087482016 @default.
- W4205516679 hasConcept C108037233 @default.
- W4205516679 hasConcept C111919701 @default.
- W4205516679 hasConcept C120314980 @default.
- W4205516679 hasConcept C153646914 @default.
- W4205516679 hasConcept C190793597 @default.
- W4205516679 hasConcept C2524010 @default.
- W4205516679 hasConcept C2777210771 @default.
- W4205516679 hasConcept C2777904410 @default.
- W4205516679 hasConcept C31258907 @default.
- W4205516679 hasConcept C33923547 @default.
- W4205516679 hasConcept C41008148 @default.
- W4205516679 hasConcept C555944384 @default.
- W4205516679 hasConcept C68649174 @default.
- W4205516679 hasConceptScore W4205516679C108037233 @default.
- W4205516679 hasConceptScore W4205516679C111919701 @default.
- W4205516679 hasConceptScore W4205516679C120314980 @default.
- W4205516679 hasConceptScore W4205516679C153646914 @default.
- W4205516679 hasConceptScore W4205516679C190793597 @default.
- W4205516679 hasConceptScore W4205516679C2524010 @default.
- W4205516679 hasConceptScore W4205516679C2777210771 @default.
- W4205516679 hasConceptScore W4205516679C2777904410 @default.
- W4205516679 hasConceptScore W4205516679C31258907 @default.
- W4205516679 hasConceptScore W4205516679C33923547 @default.
- W4205516679 hasConceptScore W4205516679C41008148 @default.
- W4205516679 hasConceptScore W4205516679C555944384 @default.
- W4205516679 hasConceptScore W4205516679C68649174 @default.
- W4205516679 hasIssue "4" @default.
- W4205516679 hasLocation W42055166791 @default.
- W4205516679 hasOpenAccess W4205516679 @default.
- W4205516679 hasPrimaryLocation W42055166791 @default.
- W4205516679 hasRelatedWork W2029216794 @default.
- W4205516679 hasRelatedWork W2047225036 @default.
- W4205516679 hasRelatedWork W2093207996 @default.
- W4205516679 hasRelatedWork W2138314731 @default.
- W4205516679 hasRelatedWork W2142989636 @default.
- W4205516679 hasRelatedWork W2322468729 @default.
- W4205516679 hasRelatedWork W2763830955 @default.
- W4205516679 hasRelatedWork W3033750547 @default.
- W4205516679 hasRelatedWork W4386698331 @default.
- W4205516679 hasRelatedWork W2168356777 @default.
- W4205516679 hasVolume "42" @default.
- W4205516679 isParatext "false" @default.
- W4205516679 isRetracted "false" @default.
- W4205516679 workType "article" @default.