Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205525897> ?p ?o ?g. }
- W4205525897 endingPage "495" @default.
- W4205525897 startingPage "485" @default.
- W4205525897 abstract "Abstract Purpose Transsphenoidal surgery (TSS) for pituitary adenomas can be complicated by the occurrence of intraoperative cerebrospinal fluid (CSF) leakage (IOL). IOL significantly affects the course of surgery predisposing to the development of postoperative CSF leakage, a major source of morbidity and mortality in the postoperative period. The authors trained and internally validated the Random Forest (RF) prediction model to preoperatively identify patients at high risk for IOL. A locally interpretable model-agnostic explanations (LIME) algorithm is employed to elucidate the main drivers behind each machine learning (ML) model prediction. Methods The data of 210 patients who underwent TSS were collected; first, risk factors for IOL were identified via conventional statistical methods (multivariable logistic regression). Then, the authors trained, optimized, and audited a RF prediction model. Results IOL reported in 45 patients (21.5%). The recursive feature selection algorithm identified the following variables as the most significant determinants of IOL: Knosp's grade, sellar Hardy's grade, suprasellar Hardy's grade, tumor diameter (on X, Y, and Z axes), intercarotid distance, and secreting status (nonfunctioning and growth hormone [GH] secreting). Leveraging the predictive values of these variables, the RF prediction model achieved an area under the curve (AUC) of 0.83 (95% confidence interval [CI]: 0.78; 0.86), significantly outperforming the multivariable logistic regression model (AUC = 0.63). Conclusion A RF model that reliably identifies patients at risk for IOL was successfully trained and internally validated. ML-based prediction models can predict events that were previously judged nearly unpredictable; their deployment in clinical practice may result in improved patient care and reduced postoperative morbidity and healthcare costs." @default.
- W4205525897 created "2022-01-25" @default.
- W4205525897 creator A5001280323 @default.
- W4205525897 creator A5006879837 @default.
- W4205525897 creator A5029381127 @default.
- W4205525897 creator A5042445499 @default.
- W4205525897 creator A5044251515 @default.
- W4205525897 creator A5047924629 @default.
- W4205525897 creator A5085604424 @default.
- W4205525897 creator A5087343135 @default.
- W4205525897 date "2022-01-16" @default.
- W4205525897 modified "2023-10-05" @default.
- W4205525897 title "Interpretable Machine Learning–Based Prediction of Intraoperative Cerebrospinal Fluid Leakage in Endoscopic Transsphenoidal Pituitary Surgery: A Pilot Study" @default.
- W4205525897 cites W1665374815 @default.
- W4205525897 cites W1788084864 @default.
- W4205525897 cites W1977966043 @default.
- W4205525897 cites W1989180819 @default.
- W4205525897 cites W1997195878 @default.
- W4205525897 cites W2077593139 @default.
- W4205525897 cites W2078271269 @default.
- W4205525897 cites W2085319821 @default.
- W4205525897 cites W2130343851 @default.
- W4205525897 cites W2148143831 @default.
- W4205525897 cites W2148977460 @default.
- W4205525897 cites W2156665896 @default.
- W4205525897 cites W2169285019 @default.
- W4205525897 cites W2397372470 @default.
- W4205525897 cites W2403268446 @default.
- W4205525897 cites W2510619192 @default.
- W4205525897 cites W2517378513 @default.
- W4205525897 cites W2586355085 @default.
- W4205525897 cites W2605614336 @default.
- W4205525897 cites W2744265819 @default.
- W4205525897 cites W2755648165 @default.
- W4205525897 cites W2757031456 @default.
- W4205525897 cites W2761529114 @default.
- W4205525897 cites W2766300505 @default.
- W4205525897 cites W2766438525 @default.
- W4205525897 cites W2778170490 @default.
- W4205525897 cites W2792490355 @default.
- W4205525897 cites W2792945112 @default.
- W4205525897 cites W2799490080 @default.
- W4205525897 cites W2900843314 @default.
- W4205525897 cites W2911964244 @default.
- W4205525897 cites W2919115771 @default.
- W4205525897 cites W2924937136 @default.
- W4205525897 cites W2953413445 @default.
- W4205525897 cites W2977436523 @default.
- W4205525897 cites W3017090018 @default.
- W4205525897 cites W3029137193 @default.
- W4205525897 cites W4230172521 @default.
- W4205525897 cites W4236799855 @default.
- W4205525897 doi "https://doi.org/10.1055/s-0041-1740621" @default.
- W4205525897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36091632" @default.
- W4205525897 hasPublicationYear "2022" @default.
- W4205525897 type Work @default.
- W4205525897 citedByCount "2" @default.
- W4205525897 countsByYear W42055258972023 @default.
- W4205525897 crossrefType "journal-article" @default.
- W4205525897 hasAuthorship W4205525897A5001280323 @default.
- W4205525897 hasAuthorship W4205525897A5006879837 @default.
- W4205525897 hasAuthorship W4205525897A5029381127 @default.
- W4205525897 hasAuthorship W4205525897A5042445499 @default.
- W4205525897 hasAuthorship W4205525897A5044251515 @default.
- W4205525897 hasAuthorship W4205525897A5047924629 @default.
- W4205525897 hasAuthorship W4205525897A5085604424 @default.
- W4205525897 hasAuthorship W4205525897A5087343135 @default.
- W4205525897 hasBestOaLocation W42055258972 @default.
- W4205525897 hasConcept C119857082 @default.
- W4205525897 hasConcept C126322002 @default.
- W4205525897 hasConcept C141071460 @default.
- W4205525897 hasConcept C151956035 @default.
- W4205525897 hasConcept C154945302 @default.
- W4205525897 hasConcept C2777428134 @default.
- W4205525897 hasConcept C2779318953 @default.
- W4205525897 hasConcept C2779651940 @default.
- W4205525897 hasConcept C2779653919 @default.
- W4205525897 hasConcept C2909079918 @default.
- W4205525897 hasConcept C41008148 @default.
- W4205525897 hasConcept C44249647 @default.
- W4205525897 hasConcept C58471807 @default.
- W4205525897 hasConcept C71924100 @default.
- W4205525897 hasConceptScore W4205525897C119857082 @default.
- W4205525897 hasConceptScore W4205525897C126322002 @default.
- W4205525897 hasConceptScore W4205525897C141071460 @default.
- W4205525897 hasConceptScore W4205525897C151956035 @default.
- W4205525897 hasConceptScore W4205525897C154945302 @default.
- W4205525897 hasConceptScore W4205525897C2777428134 @default.
- W4205525897 hasConceptScore W4205525897C2779318953 @default.
- W4205525897 hasConceptScore W4205525897C2779651940 @default.
- W4205525897 hasConceptScore W4205525897C2779653919 @default.
- W4205525897 hasConceptScore W4205525897C2909079918 @default.
- W4205525897 hasConceptScore W4205525897C41008148 @default.
- W4205525897 hasConceptScore W4205525897C44249647 @default.
- W4205525897 hasConceptScore W4205525897C58471807 @default.
- W4205525897 hasConceptScore W4205525897C71924100 @default.
- W4205525897 hasIssue "05" @default.
- W4205525897 hasLocation W42055258971 @default.