Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205539948> ?p ?o ?g. }
- W4205539948 endingPage "2273" @default.
- W4205539948 startingPage "2223" @default.
- W4205539948 abstract "Abstract We perform a comparative analysis of machine learning methods for the canonical problem of empirical asset pricing: measuring asset risk premiums. We demonstrate large economic gains to investors using machine learning forecasts, in some cases doubling the performance of leading regression-based strategies from the literature. We identify the best-performing methods (trees and neural networks) and trace their predictive gains to allowing nonlinear predictor interactions missed by other methods. All methods agree on the same set of dominant predictive signals, a set that includes variations on momentum, liquidity, and volatility. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online." @default.
- W4205539948 created "2022-01-26" @default.
- W4205539948 creator A5005696029 @default.
- W4205539948 creator A5025931561 @default.
- W4205539948 creator A5050253426 @default.
- W4205539948 date "2020-02-26" @default.
- W4205539948 modified "2023-10-17" @default.
- W4205539948 title "Empirical Asset Pricing via Machine Learning" @default.
- W4205539948 cites W1534477342 @default.
- W4205539948 cites W1789808336 @default.
- W4205539948 cites W1969404656 @default.
- W4205539948 cites W1971217947 @default.
- W4205539948 cites W1976251851 @default.
- W4205539948 cites W1995834279 @default.
- W4205539948 cites W2007694684 @default.
- W4205539948 cites W2024046085 @default.
- W4205539948 cites W2046033161 @default.
- W4205539948 cites W2048662624 @default.
- W4205539948 cites W2063730763 @default.
- W4205539948 cites W2070534370 @default.
- W4205539948 cites W2103496339 @default.
- W4205539948 cites W2135293965 @default.
- W4205539948 cites W2136922672 @default.
- W4205539948 cites W2137983211 @default.
- W4205539948 cites W2139753118 @default.
- W4205539948 cites W2144570112 @default.
- W4205539948 cites W2154987621 @default.
- W4205539948 cites W2194775991 @default.
- W4205539948 cites W2265274622 @default.
- W4205539948 cites W2319405822 @default.
- W4205539948 cites W2338469198 @default.
- W4205539948 cites W2546302380 @default.
- W4205539948 cites W2741371467 @default.
- W4205539948 cites W2787894218 @default.
- W4205539948 cites W2799643291 @default.
- W4205539948 cites W2911964244 @default.
- W4205539948 cites W2967005703 @default.
- W4205539948 cites W3004050393 @default.
- W4205539948 cites W3004732066 @default.
- W4205539948 cites W3018089439 @default.
- W4205539948 cites W3121274430 @default.
- W4205539948 cites W3121588992 @default.
- W4205539948 cites W3122020290 @default.
- W4205539948 cites W3122118888 @default.
- W4205539948 cites W3123267500 @default.
- W4205539948 cites W3123752263 @default.
- W4205539948 cites W3124436545 @default.
- W4205539948 cites W3125950889 @default.
- W4205539948 cites W3126032681 @default.
- W4205539948 cites W3126136988 @default.
- W4205539948 cites W4211170237 @default.
- W4205539948 cites W4237239309 @default.
- W4205539948 cites W4242067316 @default.
- W4205539948 doi "https://doi.org/10.1093/rfs/hhaa009" @default.
- W4205539948 hasPublicationYear "2020" @default.
- W4205539948 type Work @default.
- W4205539948 citedByCount "632" @default.
- W4205539948 countsByYear W42055399482014 @default.
- W4205539948 countsByYear W42055399482015 @default.
- W4205539948 countsByYear W42055399482016 @default.
- W4205539948 countsByYear W42055399482017 @default.
- W4205539948 countsByYear W42055399482018 @default.
- W4205539948 countsByYear W42055399482019 @default.
- W4205539948 countsByYear W42055399482020 @default.
- W4205539948 countsByYear W42055399482021 @default.
- W4205539948 countsByYear W42055399482022 @default.
- W4205539948 countsByYear W42055399482023 @default.
- W4205539948 crossrefType "journal-article" @default.
- W4205539948 hasAuthorship W4205539948A5005696029 @default.
- W4205539948 hasAuthorship W4205539948A5025931561 @default.
- W4205539948 hasAuthorship W4205539948A5050253426 @default.
- W4205539948 hasBestOaLocation W42055399481 @default.
- W4205539948 hasConcept C10138342 @default.
- W4205539948 hasConcept C119857082 @default.
- W4205539948 hasConcept C138885662 @default.
- W4205539948 hasConcept C149782125 @default.
- W4205539948 hasConcept C154945302 @default.
- W4205539948 hasConcept C162324750 @default.
- W4205539948 hasConcept C177264268 @default.
- W4205539948 hasConcept C181236170 @default.
- W4205539948 hasConcept C183582576 @default.
- W4205539948 hasConcept C199360897 @default.
- W4205539948 hasConcept C38652104 @default.
- W4205539948 hasConcept C41008148 @default.
- W4205539948 hasConcept C41895202 @default.
- W4205539948 hasConcept C50644808 @default.
- W4205539948 hasConcept C75291252 @default.
- W4205539948 hasConcept C76178495 @default.
- W4205539948 hasConcept C91602232 @default.
- W4205539948 hasConceptScore W4205539948C10138342 @default.
- W4205539948 hasConceptScore W4205539948C119857082 @default.
- W4205539948 hasConceptScore W4205539948C138885662 @default.
- W4205539948 hasConceptScore W4205539948C149782125 @default.
- W4205539948 hasConceptScore W4205539948C154945302 @default.
- W4205539948 hasConceptScore W4205539948C162324750 @default.
- W4205539948 hasConceptScore W4205539948C177264268 @default.
- W4205539948 hasConceptScore W4205539948C181236170 @default.
- W4205539948 hasConceptScore W4205539948C183582576 @default.