Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205544327> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4205544327 endingPage "159" @default.
- W4205544327 startingPage "141" @default.
- W4205544327 abstract "Smart telemetry medical devices do not have sufficient security measures, making them weak against different attacks. Machine learning (ML) has been broadly used for cyber-attack detection via on-gadgets and on-chip embedded models, which need to be held along with the medical devices, but with limited ability to perform heavy computations. The authors propose a real-time and lightweight fog computing-based threat detection using telemetry sensors data and their network traffic in NetFlow. The proposed method saves memory to a great extent as it does not require retraining. It is based on an incremental form of Hoeffding Tree Naïve Bayes Adaptive (HTNBA) and Incremental K-Nearest Neighbors (IKNN) algorithm. Furthermore, it matches the nature of sensor data which increases in seconds. Experimental results showed that the proposed model could detect different attacks against medical sensors with high accuracy (»100%), small memory usage (<50 MB), and low detection time in a few seconds." @default.
- W4205544327 created "2022-01-25" @default.
- W4205544327 creator A5026662963 @default.
- W4205544327 creator A5030241377 @default.
- W4205544327 creator A5045569977 @default.
- W4205544327 creator A5049854354 @default.
- W4205544327 creator A5050581531 @default.
- W4205544327 creator A5089742876 @default.
- W4205544327 date "2022-01-01" @default.
- W4205544327 modified "2023-10-17" @default.
- W4205544327 title "A Fog-Based Threat Detection for Telemetry Smart Medical Devices Using a Real-Time and Lightweight Incremental Learning Method" @default.
- W4205544327 cites W1554309413 @default.
- W4205544327 cites W1578276759 @default.
- W4205544327 cites W1992699253 @default.
- W4205544327 cites W2064111006 @default.
- W4205544327 cites W2068714596 @default.
- W4205544327 cites W2146208975 @default.
- W4205544327 cites W2508317201 @default.
- W4205544327 cites W2565968840 @default.
- W4205544327 cites W2586923239 @default.
- W4205544327 cites W2744180256 @default.
- W4205544327 cites W2765773770 @default.
- W4205544327 cites W2807965149 @default.
- W4205544327 cites W2809674292 @default.
- W4205544327 cites W2880420647 @default.
- W4205544327 cites W2885569475 @default.
- W4205544327 cites W2886064183 @default.
- W4205544327 cites W2888349989 @default.
- W4205544327 cites W2892077825 @default.
- W4205544327 cites W2899365571 @default.
- W4205544327 cites W2910222590 @default.
- W4205544327 cites W2920299096 @default.
- W4205544327 cites W2942653132 @default.
- W4205544327 cites W2945133570 @default.
- W4205544327 cites W2947121163 @default.
- W4205544327 cites W2956571997 @default.
- W4205544327 cites W2963302706 @default.
- W4205544327 cites W2979578434 @default.
- W4205544327 cites W2992036902 @default.
- W4205544327 cites W2996599411 @default.
- W4205544327 cites W3004702404 @default.
- W4205544327 cites W3006558576 @default.
- W4205544327 cites W3006879023 @default.
- W4205544327 cites W3010384767 @default.
- W4205544327 cites W3017752721 @default.
- W4205544327 cites W3020547132 @default.
- W4205544327 cites W3111288713 @default.
- W4205544327 cites W3123883043 @default.
- W4205544327 cites W3137923936 @default.
- W4205544327 cites W3158243668 @default.
- W4205544327 cites W3186626619 @default.
- W4205544327 doi "https://doi.org/10.4018/978-1-7998-8686-0.ch007" @default.
- W4205544327 hasPublicationYear "2022" @default.
- W4205544327 type Work @default.
- W4205544327 citedByCount "0" @default.
- W4205544327 crossrefType "book-chapter" @default.
- W4205544327 hasAuthorship W4205544327A5026662963 @default.
- W4205544327 hasAuthorship W4205544327A5030241377 @default.
- W4205544327 hasAuthorship W4205544327A5045569977 @default.
- W4205544327 hasAuthorship W4205544327A5049854354 @default.
- W4205544327 hasAuthorship W4205544327A5050581531 @default.
- W4205544327 hasAuthorship W4205544327A5089742876 @default.
- W4205544327 hasConcept C149635348 @default.
- W4205544327 hasConcept C183121708 @default.
- W4205544327 hasConcept C41008148 @default.
- W4205544327 hasConcept C76155785 @default.
- W4205544327 hasConcept C79403827 @default.
- W4205544327 hasConceptScore W4205544327C149635348 @default.
- W4205544327 hasConceptScore W4205544327C183121708 @default.
- W4205544327 hasConceptScore W4205544327C41008148 @default.
- W4205544327 hasConceptScore W4205544327C76155785 @default.
- W4205544327 hasConceptScore W4205544327C79403827 @default.
- W4205544327 hasLocation W42055443271 @default.
- W4205544327 hasOpenAccess W4205544327 @default.
- W4205544327 hasPrimaryLocation W42055443271 @default.
- W4205544327 hasRelatedWork W112797016 @default.
- W4205544327 hasRelatedWork W1519398290 @default.
- W4205544327 hasRelatedWork W1660638376 @default.
- W4205544327 hasRelatedWork W1998321608 @default.
- W4205544327 hasRelatedWork W2132225327 @default.
- W4205544327 hasRelatedWork W2363207358 @default.
- W4205544327 hasRelatedWork W2374512474 @default.
- W4205544327 hasRelatedWork W2381693813 @default.
- W4205544327 hasRelatedWork W3000101145 @default.
- W4205544327 hasRelatedWork W3188589652 @default.
- W4205544327 isParatext "false" @default.
- W4205544327 isRetracted "false" @default.
- W4205544327 workType "book-chapter" @default.