Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205555940> ?p ?o ?g. }
- W4205555940 endingPage "5619" @default.
- W4205555940 startingPage "5619" @default.
- W4205555940 abstract "Modern data analytics techniques and computationally inexpensive software tools are fueling the commercial applications of data-driven decision making and process optimization strategies for complex industrial operations. In this paper, modern and reliable process modeling techniques, i.e., multiple linear regression (MLR), artificial neural network (ANN), and least square support vector machine (LSSVM), are employed and comprehensively compared as reliable and robust process models for the generator power of a 660 MWe supercritical coal combustion power plant. Based on the external validation test conducted by the unseen operation data, LSSVM has outperformed the MLR and ANN models to predict the power plant’s generator power. Later, the LSSVM model is used for the failure mode recovery and a very successful operation control excellence tool. Moreover, by adjusting the thermo-electric operating parameters, the generator power on an average is increased by 1.74%, 1.80%, and 1.0 at 50% generation capacity, 75% generation capacity, and 100% generation capacity of the power plant, respectively. The process modeling based on process data and data-driven process optimization strategy building for improved process control is an actual realization of industry 4.0 in the industrial applications." @default.
- W4205555940 created "2022-01-26" @default.
- W4205555940 creator A5004248205 @default.
- W4205555940 creator A5017687878 @default.
- W4205555940 creator A5028840927 @default.
- W4205555940 creator A5033412853 @default.
- W4205555940 creator A5039845827 @default.
- W4205555940 creator A5040023334 @default.
- W4205555940 creator A5043393892 @default.
- W4205555940 creator A5059129621 @default.
- W4205555940 creator A5062842476 @default.
- W4205555940 creator A5065339165 @default.
- W4205555940 creator A5080519543 @default.
- W4205555940 creator A5082322854 @default.
- W4205555940 creator A5082923976 @default.
- W4205555940 creator A5083442847 @default.
- W4205555940 creator A5083841200 @default.
- W4205555940 creator A5085550364 @default.
- W4205555940 creator A5087131577 @default.
- W4205555940 date "2020-10-27" @default.
- W4205555940 modified "2023-10-18" @default.
- W4205555940 title "Optimization of a 660 MWe Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management. Part 2. Power Generation" @default.
- W4205555940 cites W1914505971 @default.
- W4205555940 cites W1963725806 @default.
- W4205555940 cites W1966299039 @default.
- W4205555940 cites W1973002019 @default.
- W4205555940 cites W1978996791 @default.
- W4205555940 cites W1986693304 @default.
- W4205555940 cites W1988140626 @default.
- W4205555940 cites W1990517717 @default.
- W4205555940 cites W2009927598 @default.
- W4205555940 cites W2015626374 @default.
- W4205555940 cites W2015755712 @default.
- W4205555940 cites W2048819594 @default.
- W4205555940 cites W2066002465 @default.
- W4205555940 cites W2085807364 @default.
- W4205555940 cites W2134100215 @default.
- W4205555940 cites W2141057577 @default.
- W4205555940 cites W2162004988 @default.
- W4205555940 cites W2205897359 @default.
- W4205555940 cites W2221063105 @default.
- W4205555940 cites W260467751 @default.
- W4205555940 cites W2609917989 @default.
- W4205555940 cites W2617150038 @default.
- W4205555940 cites W2789379822 @default.
- W4205555940 cites W2801442150 @default.
- W4205555940 cites W2802491896 @default.
- W4205555940 cites W2884486887 @default.
- W4205555940 cites W2889302498 @default.
- W4205555940 cites W2889634678 @default.
- W4205555940 cites W2905217250 @default.
- W4205555940 cites W2908762496 @default.
- W4205555940 cites W2915373746 @default.
- W4205555940 cites W2932122386 @default.
- W4205555940 cites W2945931467 @default.
- W4205555940 cites W2971136000 @default.
- W4205555940 cites W2974514560 @default.
- W4205555940 cites W2982188107 @default.
- W4205555940 cites W2985369311 @default.
- W4205555940 cites W2990853953 @default.
- W4205555940 cites W2991233743 @default.
- W4205555940 cites W2996921699 @default.
- W4205555940 cites W2998160207 @default.
- W4205555940 cites W2998196068 @default.
- W4205555940 cites W3007211815 @default.
- W4205555940 cites W3007525213 @default.
- W4205555940 cites W3016952045 @default.
- W4205555940 cites W3023541969 @default.
- W4205555940 cites W3023549458 @default.
- W4205555940 cites W3037760076 @default.
- W4205555940 cites W3043964101 @default.
- W4205555940 cites W3046768982 @default.
- W4205555940 cites W3081994511 @default.
- W4205555940 doi "https://doi.org/10.3390/en13215619" @default.
- W4205555940 hasPublicationYear "2020" @default.
- W4205555940 type Work @default.
- W4205555940 citedByCount "21" @default.
- W4205555940 countsByYear W42055559402020 @default.
- W4205555940 countsByYear W42055559402021 @default.
- W4205555940 countsByYear W42055559402022 @default.
- W4205555940 countsByYear W42055559402023 @default.
- W4205555940 crossrefType "journal-article" @default.
- W4205555940 hasAuthorship W4205555940A5004248205 @default.
- W4205555940 hasAuthorship W4205555940A5017687878 @default.
- W4205555940 hasAuthorship W4205555940A5028840927 @default.
- W4205555940 hasAuthorship W4205555940A5033412853 @default.
- W4205555940 hasAuthorship W4205555940A5039845827 @default.
- W4205555940 hasAuthorship W4205555940A5040023334 @default.
- W4205555940 hasAuthorship W4205555940A5043393892 @default.
- W4205555940 hasAuthorship W4205555940A5059129621 @default.
- W4205555940 hasAuthorship W4205555940A5062842476 @default.
- W4205555940 hasAuthorship W4205555940A5065339165 @default.
- W4205555940 hasAuthorship W4205555940A5080519543 @default.
- W4205555940 hasAuthorship W4205555940A5082322854 @default.
- W4205555940 hasAuthorship W4205555940A5082923976 @default.
- W4205555940 hasAuthorship W4205555940A5083442847 @default.
- W4205555940 hasAuthorship W4205555940A5083841200 @default.
- W4205555940 hasAuthorship W4205555940A5085550364 @default.