Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205564283> ?p ?o ?g. }
- W4205564283 endingPage "139" @default.
- W4205564283 startingPage "128" @default.
- W4205564283 abstract "Dynamic CT angiography derived from CT perfusion data can obviate a separate coronary CT angiography and the use of ionizing radiation and contrast agent, thereby enhancing patient safety. However, the image quality of dynamic CT angiography is inferior to standard CT angiography images in many studies. This paper proposes an explainable generative adversarial network named vessel-GAN, which resorts to explainable knowledge-based artificial intelligence to perform image translation with increased trustworthiness. Specifically, we design a loss term to better learn the representations of blood vessels in CT angiography images. The loss term based on expert knowledge guides the generator to focus its training on the important features predicted by the discriminator. Additionally, we propose a generator architecture that effectively fuses spatio-temporal representations and further enhances temporal consistency, thereby improving the quality of the generated CT angiography images. The experiment is conducted on a dataset consisting of 232 patients with suspected coronary artery stenosis. Experimental results show that the PSNR value of vessel-GAN is 28.32 dB, SSIM value is 0.91 and MAE value is 47.36. To validate the effectiveness of the proposed synthesis method, we compare that with other image translation frameworks and GAN-based methods. Compared to other image translation methods, the proposed method vessel-GAN can generate more clearly visible blood vessels from source perfusion images. The CTA images generated by vessel-GAN are closer to the real CTA due to the use of adversarial learning. Compared with other GAN-based methods, vessel-GAN can produce sharper and more homogeneous outputs, including realistic vascular structures. The experiment demonstrates that the explainable generative adversarial network has superior performance for it can better control how models learn. Overall, the CT angiography images generated by vessel-GAN can potentially replace a separate standard CT angiography, allowing the possibility of “one-stop” cardiac examination for high-risk coronary artery disease patients who need assessment of myocardial ischemia." @default.
- W4205564283 created "2022-01-25" @default.
- W4205564283 creator A5017326471 @default.
- W4205564283 creator A5034370634 @default.
- W4205564283 creator A5049053722 @default.
- W4205564283 creator A5055336250 @default.
- W4205564283 creator A5055991212 @default.
- W4205564283 creator A5057493271 @default.
- W4205564283 creator A5071844040 @default.
- W4205564283 date "2022-05-01" @default.
- W4205564283 modified "2023-10-10" @default.
- W4205564283 title "Vessel-GAN: Angiographic reconstructions from myocardial CT perfusion with explainable generative adversarial networks" @default.
- W4205564283 cites W1494291832 @default.
- W4205564283 cites W1522734439 @default.
- W4205564283 cites W1787224781 @default.
- W4205564283 cites W1911342144 @default.
- W4205564283 cites W1915485278 @default.
- W4205564283 cites W1983704424 @default.
- W4205564283 cites W1991605728 @default.
- W4205564283 cites W2015373798 @default.
- W4205564283 cites W2015375781 @default.
- W4205564283 cites W2025745388 @default.
- W4205564283 cites W2053595822 @default.
- W4205564283 cites W2071729987 @default.
- W4205564283 cites W2072224565 @default.
- W4205564283 cites W2089247564 @default.
- W4205564283 cites W2090286145 @default.
- W4205564283 cites W2097071819 @default.
- W4205564283 cites W2097311098 @default.
- W4205564283 cites W2105374152 @default.
- W4205564283 cites W2108975606 @default.
- W4205564283 cites W2120856410 @default.
- W4205564283 cites W2133287637 @default.
- W4205564283 cites W2138616823 @default.
- W4205564283 cites W2158796348 @default.
- W4205564283 cites W2186191235 @default.
- W4205564283 cites W2475287302 @default.
- W4205564283 cites W2551026911 @default.
- W4205564283 cites W2551080140 @default.
- W4205564283 cites W2585890928 @default.
- W4205564283 cites W2617128058 @default.
- W4205564283 cites W2731516742 @default.
- W4205564283 cites W2764024122 @default.
- W4205564283 cites W2798401174 @default.
- W4205564283 cites W2803224943 @default.
- W4205564283 cites W2808312419 @default.
- W4205564283 cites W2895739182 @default.
- W4205564283 cites W2899901572 @default.
- W4205564283 cites W2962793481 @default.
- W4205564283 cites W2962858109 @default.
- W4205564283 cites W2963073614 @default.
- W4205564283 cites W2963409068 @default.
- W4205564283 cites W2963420272 @default.
- W4205564283 cites W2963470893 @default.
- W4205564283 cites W2963707011 @default.
- W4205564283 cites W2963768110 @default.
- W4205564283 cites W2964189045 @default.
- W4205564283 cites W2981731882 @default.
- W4205564283 cites W3094370609 @default.
- W4205564283 cites W3102651566 @default.
- W4205564283 cites W3102986501 @default.
- W4205564283 cites W3103261259 @default.
- W4205564283 cites W3105747145 @default.
- W4205564283 cites W3129056955 @default.
- W4205564283 doi "https://doi.org/10.1016/j.future.2021.12.007" @default.
- W4205564283 hasPublicationYear "2022" @default.
- W4205564283 type Work @default.
- W4205564283 citedByCount "9" @default.
- W4205564283 countsByYear W42055642832022 @default.
- W4205564283 countsByYear W42055642832023 @default.
- W4205564283 crossrefType "journal-article" @default.
- W4205564283 hasAuthorship W4205564283A5017326471 @default.
- W4205564283 hasAuthorship W4205564283A5034370634 @default.
- W4205564283 hasAuthorship W4205564283A5049053722 @default.
- W4205564283 hasAuthorship W4205564283A5055336250 @default.
- W4205564283 hasAuthorship W4205564283A5055991212 @default.
- W4205564283 hasAuthorship W4205564283A5057493271 @default.
- W4205564283 hasAuthorship W4205564283A5071844040 @default.
- W4205564283 hasConcept C104317684 @default.
- W4205564283 hasConcept C105580179 @default.
- W4205564283 hasConcept C115961682 @default.
- W4205564283 hasConcept C121332964 @default.
- W4205564283 hasConcept C126838900 @default.
- W4205564283 hasConcept C149364088 @default.
- W4205564283 hasConcept C154945302 @default.
- W4205564283 hasConcept C163258240 @default.
- W4205564283 hasConcept C185592680 @default.
- W4205564283 hasConcept C2780643987 @default.
- W4205564283 hasConcept C2780992000 @default.
- W4205564283 hasConcept C31972630 @default.
- W4205564283 hasConcept C41008148 @default.
- W4205564283 hasConcept C55020928 @default.
- W4205564283 hasConcept C55493867 @default.
- W4205564283 hasConcept C62520636 @default.
- W4205564283 hasConcept C71924100 @default.
- W4205564283 hasConceptScore W4205564283C104317684 @default.
- W4205564283 hasConceptScore W4205564283C105580179 @default.
- W4205564283 hasConceptScore W4205564283C115961682 @default.