Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205571213> ?p ?o ?g. }
- W4205571213 endingPage "123060" @default.
- W4205571213 startingPage "123060" @default.
- W4205571213 abstract "The economic sector is one of the most important pillars of countries. Economic activities of industry are intimately linked with the ability to meet their needs for electricity. Therefore, electricity forecasting is a very important task. It allows for better planning and management of energy resources. Several methods have been proposed to forecast energy consumption. In this work, to predict monthly electricity consumption for the economic sector, we develop a novel approach based on ensemble learning. Our approach combines three models that proved successful in the field, namely: Long Short Term Memory and Gated Recurrent Unit neural networks, and Temporal Convolutional Networks. The experiments have been conducted with almost 2000 clients and 14 years of monthly electricity consumption from Bejaia, Algeria. The results show that the proposed ensemble models achieve better performance than both the company's requirements and the prediction of the traditional individual models. Finally, statistical tests have been carried out to prove that significance of the ensemble models developed." @default.
- W4205571213 created "2022-01-25" @default.
- W4205571213 creator A5007453127 @default.
- W4205571213 creator A5012802778 @default.
- W4205571213 creator A5015132867 @default.
- W4205571213 creator A5047161373 @default.
- W4205571213 creator A5049814728 @default.
- W4205571213 date "2022-03-01" @default.
- W4205571213 modified "2023-10-18" @default.
- W4205571213 title "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market" @default.
- W4205571213 cites W1498436455 @default.
- W4205571213 cites W1991414280 @default.
- W4205571213 cites W1998230236 @default.
- W4205571213 cites W2035174176 @default.
- W4205571213 cites W2043778420 @default.
- W4205571213 cites W2050142243 @default.
- W4205571213 cites W2064675550 @default.
- W4205571213 cites W2178310074 @default.
- W4205571213 cites W2252962308 @default.
- W4205571213 cites W2295959395 @default.
- W4205571213 cites W2317751578 @default.
- W4205571213 cites W2329258917 @default.
- W4205571213 cites W2490223215 @default.
- W4205571213 cites W2592453717 @default.
- W4205571213 cites W2622942004 @default.
- W4205571213 cites W2750021257 @default.
- W4205571213 cites W2754252319 @default.
- W4205571213 cites W2797106044 @default.
- W4205571213 cites W2797373921 @default.
- W4205571213 cites W2803099549 @default.
- W4205571213 cites W2809317444 @default.
- W4205571213 cites W2887911837 @default.
- W4205571213 cites W2892452712 @default.
- W4205571213 cites W2906033034 @default.
- W4205571213 cites W2925311032 @default.
- W4205571213 cites W2948258261 @default.
- W4205571213 cites W2948490758 @default.
- W4205571213 cites W3004732066 @default.
- W4205571213 cites W3022720643 @default.
- W4205571213 cites W3036860367 @default.
- W4205571213 cites W3048910487 @default.
- W4205571213 cites W3109365969 @default.
- W4205571213 cites W3137262131 @default.
- W4205571213 cites W3194465593 @default.
- W4205571213 cites W4212883601 @default.
- W4205571213 cites W4240294902 @default.
- W4205571213 cites W4252684946 @default.
- W4205571213 doi "https://doi.org/10.1016/j.energy.2021.123060" @default.
- W4205571213 hasPublicationYear "2022" @default.
- W4205571213 type Work @default.
- W4205571213 citedByCount "31" @default.
- W4205571213 countsByYear W42055712132022 @default.
- W4205571213 countsByYear W42055712132023 @default.
- W4205571213 crossrefType "journal-article" @default.
- W4205571213 hasAuthorship W4205571213A5007453127 @default.
- W4205571213 hasAuthorship W4205571213A5012802778 @default.
- W4205571213 hasAuthorship W4205571213A5015132867 @default.
- W4205571213 hasAuthorship W4205571213A5047161373 @default.
- W4205571213 hasAuthorship W4205571213A5049814728 @default.
- W4205571213 hasBestOaLocation W42055712131 @default.
- W4205571213 hasConcept C108583219 @default.
- W4205571213 hasConcept C119599485 @default.
- W4205571213 hasConcept C119857082 @default.
- W4205571213 hasConcept C119898033 @default.
- W4205571213 hasConcept C127413603 @default.
- W4205571213 hasConcept C134560507 @default.
- W4205571213 hasConcept C13736549 @default.
- W4205571213 hasConcept C144024400 @default.
- W4205571213 hasConcept C146733006 @default.
- W4205571213 hasConcept C154945302 @default.
- W4205571213 hasConcept C162324750 @default.
- W4205571213 hasConcept C18762648 @default.
- W4205571213 hasConcept C187736073 @default.
- W4205571213 hasConcept C202444582 @default.
- W4205571213 hasConcept C206658404 @default.
- W4205571213 hasConcept C2780165032 @default.
- W4205571213 hasConcept C2780451532 @default.
- W4205571213 hasConcept C30772137 @default.
- W4205571213 hasConcept C33923547 @default.
- W4205571213 hasConcept C36289849 @default.
- W4205571213 hasConcept C41008148 @default.
- W4205571213 hasConcept C42475967 @default.
- W4205571213 hasConcept C45942800 @default.
- W4205571213 hasConcept C50644808 @default.
- W4205571213 hasConcept C78519656 @default.
- W4205571213 hasConcept C9652623 @default.
- W4205571213 hasConceptScore W4205571213C108583219 @default.
- W4205571213 hasConceptScore W4205571213C119599485 @default.
- W4205571213 hasConceptScore W4205571213C119857082 @default.
- W4205571213 hasConceptScore W4205571213C119898033 @default.
- W4205571213 hasConceptScore W4205571213C127413603 @default.
- W4205571213 hasConceptScore W4205571213C134560507 @default.
- W4205571213 hasConceptScore W4205571213C13736549 @default.
- W4205571213 hasConceptScore W4205571213C144024400 @default.
- W4205571213 hasConceptScore W4205571213C146733006 @default.
- W4205571213 hasConceptScore W4205571213C154945302 @default.
- W4205571213 hasConceptScore W4205571213C162324750 @default.
- W4205571213 hasConceptScore W4205571213C18762648 @default.