Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205595669> ?p ?o ?g. }
- W4205595669 endingPage "130622" @default.
- W4205595669 startingPage "130622" @default.
- W4205595669 abstract "Electrocoagulation is an effective wastewater treatment process for the removal of heavy metals. This study focuses on deriving optimal conditions for removing heavy metals, viz. Lead (Pb), Cobalt (Co), and Manganese (Mn) from simulated wastewater by investigating removal efficiency and energy consumption of electrocoagulation process. Five operational parameters namely pH (2–10), current density (0.076–0.189 A/cm2), inter-electrode distance (3–7 cm), solution temperature (30–70 °C) and charging time (5–25 cm) have been analyzed. To improve the treatment of heavy metals, a novel coupled approach, namely Artificial neural network - non-dominated sorting Biogeography based optimization (ANN-NSBBO), has been proposed. Using the experimental data, a feed-forward backpropagation ANN model is used with removal efficiency and energy consumption as the outputs. Optimal values of operational parameters for maximum removal efficiency and minimum energy consumption were obtained using multi-objective NSBBO over the trained ANN model. True pareto fronts for Cobalt, Lead and Manganese were obtained after 100 iterations of the optimization algorithm. The maximum removal efficiency of 98.66% was obtained for Cobalt at the electrical energy consumption of 0.204 kWh. Minimum energy consumption for electrocoagulation of Lead (5.34 x 10−6 kWh) gave 82.48% removal efficiency. The maximum removal efficiency of Manganese (101.238%) was achieved at 7.64 pH, 0.084 A/cm2 current density, 3.188 cm inter-electrode distance, 47.49 °C solution temperature, 19.758 min charging time, and 0.145 kWh energy consumption. The non-dominated optimum tradeoff between removal efficiency and energy consumption provides clarity on operating conditions for the electrocoagulation process. The proposed approach of enhancing heavy metal treatment could assist municipalities, industries, and the scientific communities in achieving the United Nation's sustainable development goal of heavy metal remediation." @default.
- W4205595669 created "2022-01-26" @default.
- W4205595669 creator A5002354320 @default.
- W4205595669 creator A5023814073 @default.
- W4205595669 creator A5027732889 @default.
- W4205595669 creator A5086907313 @default.
- W4205595669 date "2022-03-01" @default.
- W4205595669 modified "2023-09-25" @default.
- W4205595669 title "Bioinspired modeling and biogeography-based optimization of electrocoagulation parameters for enhanced heavy metal removal" @default.
- W4205595669 cites W1832004054 @default.
- W4205595669 cites W1977034166 @default.
- W4205595669 cites W1977877663 @default.
- W4205595669 cites W1996576885 @default.
- W4205595669 cites W2012657399 @default.
- W4205595669 cites W2013374049 @default.
- W4205595669 cites W2019556505 @default.
- W4205595669 cites W2022344797 @default.
- W4205595669 cites W2031420241 @default.
- W4205595669 cites W2036020346 @default.
- W4205595669 cites W2036797030 @default.
- W4205595669 cites W2043711832 @default.
- W4205595669 cites W2076961889 @default.
- W4205595669 cites W2082194095 @default.
- W4205595669 cites W2092658731 @default.
- W4205595669 cites W2117722832 @default.
- W4205595669 cites W2151984686 @default.
- W4205595669 cites W2168081761 @default.
- W4205595669 cites W2192629475 @default.
- W4205595669 cites W2462764325 @default.
- W4205595669 cites W2546092649 @default.
- W4205595669 cites W2598391046 @default.
- W4205595669 cites W2623520101 @default.
- W4205595669 cites W2642452024 @default.
- W4205595669 cites W2739524806 @default.
- W4205595669 cites W2751605210 @default.
- W4205595669 cites W2767367353 @default.
- W4205595669 cites W2770385631 @default.
- W4205595669 cites W2791336329 @default.
- W4205595669 cites W2805726632 @default.
- W4205595669 cites W2886074680 @default.
- W4205595669 cites W2897286352 @default.
- W4205595669 cites W2919955757 @default.
- W4205595669 cites W2951724140 @default.
- W4205595669 cites W2954434272 @default.
- W4205595669 cites W2958863010 @default.
- W4205595669 cites W2964626977 @default.
- W4205595669 cites W2967207255 @default.
- W4205595669 cites W2984471777 @default.
- W4205595669 cites W2987907265 @default.
- W4205595669 cites W2995529317 @default.
- W4205595669 cites W2997933990 @default.
- W4205595669 cites W3009858840 @default.
- W4205595669 cites W3021359765 @default.
- W4205595669 cites W3042775354 @default.
- W4205595669 cites W3094452076 @default.
- W4205595669 cites W3118137329 @default.
- W4205595669 cites W3119237394 @default.
- W4205595669 cites W3127579860 @default.
- W4205595669 cites W3127620735 @default.
- W4205595669 cites W3137943598 @default.
- W4205595669 cites W3157785602 @default.
- W4205595669 cites W3161671450 @default.
- W4205595669 cites W3162033173 @default.
- W4205595669 cites W3183723205 @default.
- W4205595669 cites W3202651781 @default.
- W4205595669 cites W3205671503 @default.
- W4205595669 cites W3210238643 @default.
- W4205595669 doi "https://doi.org/10.1016/j.jclepro.2022.130622" @default.
- W4205595669 hasPublicationYear "2022" @default.
- W4205595669 type Work @default.
- W4205595669 citedByCount "12" @default.
- W4205595669 countsByYear W42055956692022 @default.
- W4205595669 countsByYear W42055956692023 @default.
- W4205595669 crossrefType "journal-article" @default.
- W4205595669 hasAuthorship W4205595669A5002354320 @default.
- W4205595669 hasAuthorship W4205595669A5023814073 @default.
- W4205595669 hasAuthorship W4205595669A5027732889 @default.
- W4205595669 hasAuthorship W4205595669A5086907313 @default.
- W4205595669 hasConcept C111696304 @default.
- W4205595669 hasConcept C11413529 @default.
- W4205595669 hasConcept C119599485 @default.
- W4205595669 hasConcept C127413603 @default.
- W4205595669 hasConcept C147789679 @default.
- W4205595669 hasConcept C17525397 @default.
- W4205595669 hasConcept C185592680 @default.
- W4205595669 hasConcept C191897082 @default.
- W4205595669 hasConcept C192562407 @default.
- W4205595669 hasConcept C21880701 @default.
- W4205595669 hasConcept C2777828583 @default.
- W4205595669 hasConcept C2780165032 @default.
- W4205595669 hasConcept C33923547 @default.
- W4205595669 hasConcept C39432304 @default.
- W4205595669 hasConcept C515602321 @default.
- W4205595669 hasConcept C528890316 @default.
- W4205595669 hasConcept C87717796 @default.
- W4205595669 hasConcept C94061648 @default.
- W4205595669 hasConceptScore W4205595669C111696304 @default.
- W4205595669 hasConceptScore W4205595669C11413529 @default.