Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205620710> ?p ?o ?g. }
- W4205620710 abstract "Autism Spectrum Disorder (ASD) is a well-known mental disorders that prevails in the ability of a person’s social communication. The significance of early diagnosing drew the attention of researchers to use different machine learning-based procedures. Many analyses are done with the help of machine learning (ML) techniques to foresee meltdowns of autism together with Support Vector Machines, Random Forests, Naive Bayes, K-nearest Neighbors and many more. This paper gives a wide-spread review of papers applying machine learning in predicting ASD, along with algorithms for data analysis and classification. More than 80 research papers are considered, and the articles are assembled from the internet. Finally 48 research articles are coped up with the prerequisites in this study. The main goal of this review is to distinguish and mark out the machine learning trends in ASD literature and show the way to researchers curious in expanding the core of predicting ASD data and observe momentous research patterns in the field of ML. This paper will be a guideline to future researchers who are willing to work in the field of predicting ASD meltdown." @default.
- W4205620710 created "2022-01-26" @default.
- W4205620710 creator A5020365919 @default.
- W4205620710 creator A5027540543 @default.
- W4205620710 creator A5052039059 @default.
- W4205620710 creator A5075029286 @default.
- W4205620710 date "2021-11-18" @default.
- W4205620710 modified "2023-10-03" @default.
- W4205620710 title "A Review on Predicting Autism Spectrum Disorder(ASD) meltdown using Machine Learning Algorithms" @default.
- W4205620710 cites W1695559766 @default.
- W4205620710 cites W2043709016 @default.
- W4205620710 cites W2051306708 @default.
- W4205620710 cites W2075809779 @default.
- W4205620710 cites W2092444470 @default.
- W4205620710 cites W2100254283 @default.
- W4205620710 cites W2103934447 @default.
- W4205620710 cites W2128360525 @default.
- W4205620710 cites W2130175846 @default.
- W4205620710 cites W2164551677 @default.
- W4205620710 cites W2499206048 @default.
- W4205620710 cites W2599270611 @default.
- W4205620710 cites W2754237665 @default.
- W4205620710 cites W2778498875 @default.
- W4205620710 cites W2784296953 @default.
- W4205620710 cites W2786031771 @default.
- W4205620710 cites W2801805505 @default.
- W4205620710 cites W2807910517 @default.
- W4205620710 cites W2885696561 @default.
- W4205620710 cites W2889727209 @default.
- W4205620710 cites W2909092218 @default.
- W4205620710 cites W2928823069 @default.
- W4205620710 cites W2940216078 @default.
- W4205620710 cites W2950672152 @default.
- W4205620710 cites W2968857938 @default.
- W4205620710 cites W2976262266 @default.
- W4205620710 cites W2978443331 @default.
- W4205620710 cites W2979584271 @default.
- W4205620710 cites W2988828954 @default.
- W4205620710 cites W3003170058 @default.
- W4205620710 cites W3003632128 @default.
- W4205620710 cites W3003747266 @default.
- W4205620710 cites W3035139590 @default.
- W4205620710 cites W3041198221 @default.
- W4205620710 cites W3048043632 @default.
- W4205620710 cites W3082946250 @default.
- W4205620710 cites W3085950872 @default.
- W4205620710 cites W3113009681 @default.
- W4205620710 cites W3123169337 @default.
- W4205620710 cites W3130904137 @default.
- W4205620710 cites W3139087651 @default.
- W4205620710 cites W3159640536 @default.
- W4205620710 cites W3162533277 @default.
- W4205620710 cites W3186961439 @default.
- W4205620710 doi "https://doi.org/10.1109/iceeict53905.2021.9667827" @default.
- W4205620710 hasPublicationYear "2021" @default.
- W4205620710 type Work @default.
- W4205620710 citedByCount "8" @default.
- W4205620710 countsByYear W42056207102022 @default.
- W4205620710 countsByYear W42056207102023 @default.
- W4205620710 crossrefType "proceedings-article" @default.
- W4205620710 hasAuthorship W4205620710A5020365919 @default.
- W4205620710 hasAuthorship W4205620710A5027540543 @default.
- W4205620710 hasAuthorship W4205620710A5052039059 @default.
- W4205620710 hasAuthorship W4205620710A5075029286 @default.
- W4205620710 hasConcept C11413529 @default.
- W4205620710 hasConcept C119857082 @default.
- W4205620710 hasConcept C12267149 @default.
- W4205620710 hasConcept C138496976 @default.
- W4205620710 hasConcept C154945302 @default.
- W4205620710 hasConcept C15744967 @default.
- W4205620710 hasConcept C169258074 @default.
- W4205620710 hasConcept C202444582 @default.
- W4205620710 hasConcept C205778803 @default.
- W4205620710 hasConcept C2778538070 @default.
- W4205620710 hasConcept C2986165187 @default.
- W4205620710 hasConcept C33923547 @default.
- W4205620710 hasConcept C41008148 @default.
- W4205620710 hasConcept C52001869 @default.
- W4205620710 hasConcept C9652623 @default.
- W4205620710 hasConceptScore W4205620710C11413529 @default.
- W4205620710 hasConceptScore W4205620710C119857082 @default.
- W4205620710 hasConceptScore W4205620710C12267149 @default.
- W4205620710 hasConceptScore W4205620710C138496976 @default.
- W4205620710 hasConceptScore W4205620710C154945302 @default.
- W4205620710 hasConceptScore W4205620710C15744967 @default.
- W4205620710 hasConceptScore W4205620710C169258074 @default.
- W4205620710 hasConceptScore W4205620710C202444582 @default.
- W4205620710 hasConceptScore W4205620710C205778803 @default.
- W4205620710 hasConceptScore W4205620710C2778538070 @default.
- W4205620710 hasConceptScore W4205620710C2986165187 @default.
- W4205620710 hasConceptScore W4205620710C33923547 @default.
- W4205620710 hasConceptScore W4205620710C41008148 @default.
- W4205620710 hasConceptScore W4205620710C52001869 @default.
- W4205620710 hasConceptScore W4205620710C9652623 @default.
- W4205620710 hasLocation W42056207101 @default.
- W4205620710 hasOpenAccess W4205620710 @default.
- W4205620710 hasPrimaryLocation W42056207101 @default.
- W4205620710 hasRelatedWork W2985924212 @default.
- W4205620710 hasRelatedWork W3108448481 @default.
- W4205620710 hasRelatedWork W3168994312 @default.