Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205621505> ?p ?o ?g. }
- W4205621505 endingPage "115" @default.
- W4205621505 startingPage "97" @default.
- W4205621505 abstract "The increasing concerns over the use of nuclear materials for malevolent purposes (i.e., terrorist attacks) have fueled the interest in developing technologies that can detect hidden nuclear material before its use. The process of detecting and identifying nuclear materials for non-reported purposes is under the umbrella of nuclear security. Among several areas that contribute to the security and safeguards of nuclear materials, radiation data analytics has recently been marked as an area of high potential. Therefore, there is an increasing trend in applying machine learning for developing data analysis methods applied to radiation signals aiming at identifying patterns of interest associated with nuclear materials. This chapter aspires in providing a comprehensive survey and discussion of machine learning and data analytics methods pertained to nuclear security. The chapter will also discuss further trends and how data analytics can further enhance nuclear security by effectively analyzing radiation data." @default.
- W4205621505 created "2022-01-26" @default.
- W4205621505 creator A5038301956 @default.
- W4205621505 creator A5074118906 @default.
- W4205621505 date "2021-08-06" @default.
- W4205621505 modified "2023-09-24" @default.
- W4205621505 title "Survey of Machine Learning Approaches in Radiation Data Analytics Pertained to Nuclear Security" @default.
- W4205621505 cites W1588509979 @default.
- W4205621505 cites W1984901463 @default.
- W4205621505 cites W1986039199 @default.
- W4205621505 cites W1991340020 @default.
- W4205621505 cites W2003664138 @default.
- W4205621505 cites W2008273110 @default.
- W4205621505 cites W2023083839 @default.
- W4205621505 cites W2043598570 @default.
- W4205621505 cites W2045084539 @default.
- W4205621505 cites W2056992296 @default.
- W4205621505 cites W2061970613 @default.
- W4205621505 cites W2065741610 @default.
- W4205621505 cites W2067617235 @default.
- W4205621505 cites W2073762577 @default.
- W4205621505 cites W2075111421 @default.
- W4205621505 cites W2076081728 @default.
- W4205621505 cites W2085766679 @default.
- W4205621505 cites W2109645635 @default.
- W4205621505 cites W2126489928 @default.
- W4205621505 cites W2149540873 @default.
- W4205621505 cites W2159588611 @default.
- W4205621505 cites W2168891233 @default.
- W4205621505 cites W2194649702 @default.
- W4205621505 cites W2201477390 @default.
- W4205621505 cites W2250097389 @default.
- W4205621505 cites W2474304286 @default.
- W4205621505 cites W2528511281 @default.
- W4205621505 cites W2529329132 @default.
- W4205621505 cites W2588347690 @default.
- W4205621505 cites W2606960612 @default.
- W4205621505 cites W2607291805 @default.
- W4205621505 cites W2803206852 @default.
- W4205621505 cites W2884704224 @default.
- W4205621505 cites W2904126533 @default.
- W4205621505 cites W2912182926 @default.
- W4205621505 cites W2964129001 @default.
- W4205621505 cites W2966951682 @default.
- W4205621505 cites W2995486978 @default.
- W4205621505 cites W2996040028 @default.
- W4205621505 cites W3004227146 @default.
- W4205621505 cites W3004366142 @default.
- W4205621505 cites W3031735153 @default.
- W4205621505 cites W3044552005 @default.
- W4205621505 cites W3044673492 @default.
- W4205621505 cites W4212882790 @default.
- W4205621505 cites W4236691806 @default.
- W4205621505 cites W4247844689 @default.
- W4205621505 doi "https://doi.org/10.1007/978-3-030-76794-5_6" @default.
- W4205621505 hasPublicationYear "2021" @default.
- W4205621505 type Work @default.
- W4205621505 citedByCount "2" @default.
- W4205621505 countsByYear W42056215052022 @default.
- W4205621505 countsByYear W42056215052023 @default.
- W4205621505 crossrefType "book-chapter" @default.
- W4205621505 hasAuthorship W4205621505A5038301956 @default.
- W4205621505 hasAuthorship W4205621505A5074118906 @default.
- W4205621505 hasConcept C111919701 @default.
- W4205621505 hasConcept C116915560 @default.
- W4205621505 hasConcept C121332964 @default.
- W4205621505 hasConcept C124101348 @default.
- W4205621505 hasConcept C127413603 @default.
- W4205621505 hasConcept C156576523 @default.
- W4205621505 hasConcept C175801342 @default.
- W4205621505 hasConcept C185544564 @default.
- W4205621505 hasConcept C194110935 @default.
- W4205621505 hasConcept C2522767166 @default.
- W4205621505 hasConcept C2992487123 @default.
- W4205621505 hasConcept C38652104 @default.
- W4205621505 hasConcept C41008148 @default.
- W4205621505 hasConcept C513653683 @default.
- W4205621505 hasConcept C79158427 @default.
- W4205621505 hasConcept C98045186 @default.
- W4205621505 hasConceptScore W4205621505C111919701 @default.
- W4205621505 hasConceptScore W4205621505C116915560 @default.
- W4205621505 hasConceptScore W4205621505C121332964 @default.
- W4205621505 hasConceptScore W4205621505C124101348 @default.
- W4205621505 hasConceptScore W4205621505C127413603 @default.
- W4205621505 hasConceptScore W4205621505C156576523 @default.
- W4205621505 hasConceptScore W4205621505C175801342 @default.
- W4205621505 hasConceptScore W4205621505C185544564 @default.
- W4205621505 hasConceptScore W4205621505C194110935 @default.
- W4205621505 hasConceptScore W4205621505C2522767166 @default.
- W4205621505 hasConceptScore W4205621505C2992487123 @default.
- W4205621505 hasConceptScore W4205621505C38652104 @default.
- W4205621505 hasConceptScore W4205621505C41008148 @default.
- W4205621505 hasConceptScore W4205621505C513653683 @default.
- W4205621505 hasConceptScore W4205621505C79158427 @default.
- W4205621505 hasConceptScore W4205621505C98045186 @default.
- W4205621505 hasLocation W42056215051 @default.
- W4205621505 hasOpenAccess W4205621505 @default.
- W4205621505 hasPrimaryLocation W42056215051 @default.