Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205651438> ?p ?o ?g. }
- W4205651438 abstract "Accurate prediction of atomic partial charges with high-level quantum mechanics (QM) methods suffers from high computational cost. Numerous feature-engineered machine learning (ML)-based predictors with favorable computability and reliability have been developed as alternatives. However, extensive expertise effort was needed for feature engineering of atom chemical environment, which may consequently introduce domain bias. In this study, SuperAtomicCharge, a data-driven deep graph learning framework, was proposed to predict three important types of partial charges (i.e. RESP, DDEC4 and DDEC78) derived from high-level QM calculations based on the structures of molecules. SuperAtomicCharge was designed to simultaneously exploit the 2D and 3D structural information of molecules, which was proved to be an effective way to improve the prediction accuracy of the model. Moreover, a simple transfer learning strategy and a multitask learning strategy based on self-supervised descriptors were also employed to further improve the prediction accuracy of the proposed model. Compared with the latest baselines, including one GNN-based predictor and two ML-based predictors, SuperAtomicCharge showed better performance on all the three external test sets and had better usability and portability. Furthermore, the QM partial charges of new molecules predicted by SuperAtomicCharge can be efficiently used in drug design applications such as structure-based virtual screening, where the predicted RESP and DDEC4 charges of new molecules showed more robust scoring and screening power than the commonly used partial charges. Finally, two tools including an online server (http://cadd.zju.edu.cn/deepchargepredictor) and the source code command lines (https://github.com/zjujdj/SuperAtomicCharge) were developed for the easy access of the SuperAtomicCharge services." @default.
- W4205651438 created "2022-01-25" @default.
- W4205651438 creator A5008663435 @default.
- W4205651438 creator A5011434518 @default.
- W4205651438 creator A5013319024 @default.
- W4205651438 creator A5016271063 @default.
- W4205651438 creator A5028525523 @default.
- W4205651438 creator A5052900302 @default.
- W4205651438 creator A5065805707 @default.
- W4205651438 creator A5075242841 @default.
- W4205651438 creator A5083809384 @default.
- W4205651438 date "2022-01-22" @default.
- W4205651438 modified "2023-10-06" @default.
- W4205651438 title "Out-of-the-box deep learning prediction of quantum-mechanical partial charges by graph representation and transfer learning" @default.
- W4205651438 cites W1976161355 @default.
- W4205651438 cites W2008517160 @default.
- W4205651438 cites W2013199885 @default.
- W4205651438 cites W2037535298 @default.
- W4205651438 cites W2059495497 @default.
- W4205651438 cites W2092285329 @default.
- W4205651438 cites W2148893085 @default.
- W4205651438 cites W2541404351 @default.
- W4205651438 cites W2587598315 @default.
- W4205651438 cites W2788873578 @default.
- W4205651438 cites W2803587386 @default.
- W4205651438 cites W2884817966 @default.
- W4205651438 cites W2968734407 @default.
- W4205651438 cites W2982632536 @default.
- W4205651438 cites W2997811522 @default.
- W4205651438 cites W3005765690 @default.
- W4205651438 cites W3009499476 @default.
- W4205651438 cites W3013702826 @default.
- W4205651438 cites W3015208165 @default.
- W4205651438 cites W3025953134 @default.
- W4205651438 cites W3033131224 @default.
- W4205651438 cites W3033564049 @default.
- W4205651438 cites W3042826782 @default.
- W4205651438 cites W3116202926 @default.
- W4205651438 cites W3129238601 @default.
- W4205651438 cites W3157265962 @default.
- W4205651438 cites W3157427301 @default.
- W4205651438 cites W3161250826 @default.
- W4205651438 doi "https://doi.org/10.1093/bib/bbab597" @default.
- W4205651438 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35062020" @default.
- W4205651438 hasPublicationYear "2022" @default.
- W4205651438 type Work @default.
- W4205651438 citedByCount "6" @default.
- W4205651438 countsByYear W42056514382022 @default.
- W4205651438 countsByYear W42056514382023 @default.
- W4205651438 crossrefType "journal-article" @default.
- W4205651438 hasAuthorship W4205651438A5008663435 @default.
- W4205651438 hasAuthorship W4205651438A5011434518 @default.
- W4205651438 hasAuthorship W4205651438A5013319024 @default.
- W4205651438 hasAuthorship W4205651438A5016271063 @default.
- W4205651438 hasAuthorship W4205651438A5028525523 @default.
- W4205651438 hasAuthorship W4205651438A5052900302 @default.
- W4205651438 hasAuthorship W4205651438A5065805707 @default.
- W4205651438 hasAuthorship W4205651438A5075242841 @default.
- W4205651438 hasAuthorship W4205651438A5083809384 @default.
- W4205651438 hasConcept C107457646 @default.
- W4205651438 hasConcept C108583219 @default.
- W4205651438 hasConcept C11413529 @default.
- W4205651438 hasConcept C119857082 @default.
- W4205651438 hasConcept C12892243 @default.
- W4205651438 hasConcept C132525143 @default.
- W4205651438 hasConcept C150899416 @default.
- W4205651438 hasConcept C154945302 @default.
- W4205651438 hasConcept C165696696 @default.
- W4205651438 hasConcept C170130773 @default.
- W4205651438 hasConcept C178790620 @default.
- W4205651438 hasConcept C185592680 @default.
- W4205651438 hasConcept C199360897 @default.
- W4205651438 hasConcept C32909587 @default.
- W4205651438 hasConcept C38652104 @default.
- W4205651438 hasConcept C41008148 @default.
- W4205651438 hasConcept C43126263 @default.
- W4205651438 hasConcept C63000827 @default.
- W4205651438 hasConcept C80444323 @default.
- W4205651438 hasConceptScore W4205651438C107457646 @default.
- W4205651438 hasConceptScore W4205651438C108583219 @default.
- W4205651438 hasConceptScore W4205651438C11413529 @default.
- W4205651438 hasConceptScore W4205651438C119857082 @default.
- W4205651438 hasConceptScore W4205651438C12892243 @default.
- W4205651438 hasConceptScore W4205651438C132525143 @default.
- W4205651438 hasConceptScore W4205651438C150899416 @default.
- W4205651438 hasConceptScore W4205651438C154945302 @default.
- W4205651438 hasConceptScore W4205651438C165696696 @default.
- W4205651438 hasConceptScore W4205651438C170130773 @default.
- W4205651438 hasConceptScore W4205651438C178790620 @default.
- W4205651438 hasConceptScore W4205651438C185592680 @default.
- W4205651438 hasConceptScore W4205651438C199360897 @default.
- W4205651438 hasConceptScore W4205651438C32909587 @default.
- W4205651438 hasConceptScore W4205651438C38652104 @default.
- W4205651438 hasConceptScore W4205651438C41008148 @default.
- W4205651438 hasConceptScore W4205651438C43126263 @default.
- W4205651438 hasConceptScore W4205651438C63000827 @default.
- W4205651438 hasConceptScore W4205651438C80444323 @default.
- W4205651438 hasFunder F4320321001 @default.
- W4205651438 hasFunder F4320335787 @default.
- W4205651438 hasIssue "2" @default.