Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205652854> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4205652854 endingPage "110" @default.
- W4205652854 startingPage "97" @default.
- W4205652854 abstract "In his recent article [5], P. Gruber has surveyed the development of the Geometry of Numbers since the publication of the books of Cassels [3] and Lekkerkerker [6]. As none of these sources deals specifically with lattices other than those of Minkowski-type (i.e. a ℤ-module with N generators in ℝN) it seems worthwhile to trace the main developments there for lattices which have more algebraic structure. Even though these are often endowed with arithmetic properties as for example when ℝ and ℤ are replaced by some field k and a ring O of integral elements in k, we shall use the term ‘algebraic lattice’. A special case is the Leech lattice, which arose as a Z-module of rank 24 in ℝ24 and can now be interpreted in this way as an O-module of rank 12 in k12, where k is the Eisenstein field Q(ρ), ρ = exp(2πi/3). Such features of an algebraic lattice have in recent years been harnessed to deal with problems in other areas, e.g. Finite groups, Sphere packings and Codes. As we intend to keep mainly to the ideas and spirit of the Geometry of Numbers, the section devoted to these special algebraic lattices is brief and supplied only with a selection of general references. With this view, it is however appropriate to include details of the case when k is a field endowed with a non-archimedean valuation and, in particular, to survey the work of Armitage [1], [2] on the Riemann-Roch theorem. Although a number of other generalizations appear in the literature (e.g. Dubois [4]), we shall confine our attention to one sufficiently general to include most of these and which permits the study of non-commutative lattices. As a Minkowski lattice may be interpreted as a discrete subgroup Г of the additive group G of ℝN with the property that the factor group G/Г has compact closure, it is natural to review the impact of the ideas of the Geometry of Numbers on discrete subgroups of topological groups and of Lie groups. But, overall, the recurrent themes are the fundamental theorems of Minkowski ([7], [5]) (§3.1) for convex bodies and the compactness theorem of Mahler ([5], Section 2)." @default.
- W4205652854 created "2022-01-26" @default.
- W4205652854 creator A5090993746 @default.
- W4205652854 date "1983-01-01" @default.
- W4205652854 modified "2023-09-25" @default.
- W4205652854 title "Algebraic Lattices" @default.
- W4205652854 cites W1495027777 @default.
- W4205652854 cites W1557027117 @default.
- W4205652854 cites W1712531097 @default.
- W4205652854 cites W1968540843 @default.
- W4205652854 cites W1972841866 @default.
- W4205652854 cites W1979219182 @default.
- W4205652854 cites W1985119799 @default.
- W4205652854 cites W1985122139 @default.
- W4205652854 cites W1995475705 @default.
- W4205652854 cites W2000949067 @default.
- W4205652854 cites W2043594582 @default.
- W4205652854 cites W2048621944 @default.
- W4205652854 cites W2070586430 @default.
- W4205652854 cites W2079573288 @default.
- W4205652854 cites W2081780875 @default.
- W4205652854 cites W2087240680 @default.
- W4205652854 cites W2159517593 @default.
- W4205652854 cites W2171531899 @default.
- W4205652854 cites W2316593342 @default.
- W4205652854 cites W2316776642 @default.
- W4205652854 cites W2319446899 @default.
- W4205652854 cites W2328980644 @default.
- W4205652854 cites W2583339016 @default.
- W4205652854 cites W2950188125 @default.
- W4205652854 cites W4237270581 @default.
- W4205652854 cites W4255201897 @default.
- W4205652854 doi "https://doi.org/10.1007/978-3-0348-5858-8_4" @default.
- W4205652854 hasPublicationYear "1983" @default.
- W4205652854 type Work @default.
- W4205652854 citedByCount "1" @default.
- W4205652854 crossrefType "book-chapter" @default.
- W4205652854 hasAuthorship W4205652854A5090993746 @default.
- W4205652854 hasConcept C121332964 @default.
- W4205652854 hasConcept C12657307 @default.
- W4205652854 hasConcept C134306372 @default.
- W4205652854 hasConcept C136119220 @default.
- W4205652854 hasConcept C202444582 @default.
- W4205652854 hasConcept C24890656 @default.
- W4205652854 hasConcept C2524010 @default.
- W4205652854 hasConcept C2781204021 @default.
- W4205652854 hasConcept C33923547 @default.
- W4205652854 hasConcept C52690540 @default.
- W4205652854 hasConcept C68363185 @default.
- W4205652854 hasConcept C79464548 @default.
- W4205652854 hasConcept C9376300 @default.
- W4205652854 hasConcept C9652623 @default.
- W4205652854 hasConceptScore W4205652854C121332964 @default.
- W4205652854 hasConceptScore W4205652854C12657307 @default.
- W4205652854 hasConceptScore W4205652854C134306372 @default.
- W4205652854 hasConceptScore W4205652854C136119220 @default.
- W4205652854 hasConceptScore W4205652854C202444582 @default.
- W4205652854 hasConceptScore W4205652854C24890656 @default.
- W4205652854 hasConceptScore W4205652854C2524010 @default.
- W4205652854 hasConceptScore W4205652854C2781204021 @default.
- W4205652854 hasConceptScore W4205652854C33923547 @default.
- W4205652854 hasConceptScore W4205652854C52690540 @default.
- W4205652854 hasConceptScore W4205652854C68363185 @default.
- W4205652854 hasConceptScore W4205652854C79464548 @default.
- W4205652854 hasConceptScore W4205652854C9376300 @default.
- W4205652854 hasConceptScore W4205652854C9652623 @default.
- W4205652854 hasLocation W42056528541 @default.
- W4205652854 hasOpenAccess W4205652854 @default.
- W4205652854 hasPrimaryLocation W42056528541 @default.
- W4205652854 hasRelatedWork W1513686769 @default.
- W4205652854 hasRelatedWork W2019033540 @default.
- W4205652854 hasRelatedWork W2019134359 @default.
- W4205652854 hasRelatedWork W2068598356 @default.
- W4205652854 hasRelatedWork W2076695093 @default.
- W4205652854 hasRelatedWork W2147898042 @default.
- W4205652854 hasRelatedWork W2528381543 @default.
- W4205652854 hasRelatedWork W3106889971 @default.
- W4205652854 hasRelatedWork W3119793959 @default.
- W4205652854 hasRelatedWork W4238474000 @default.
- W4205652854 isParatext "false" @default.
- W4205652854 isRetracted "false" @default.
- W4205652854 workType "book-chapter" @default.