Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205653212> ?p ?o ?g. }
- W4205653212 endingPage "2255" @default.
- W4205653212 startingPage "2243" @default.
- W4205653212 abstract "Persons with normal arm function can perform complex wrist and hand movements over a wide range of limb positions. However, for those with transradial amputation who use myoelectric prostheses, control across multiple limb positions can be challenging, frustrating, and can increase the likelihood of device abandonment. In response, the goal of this research was to investigate convolutional neural network (RCNN)-based position-aware myoelectric prosthesis control strategies.Surface electromyographic (EMG) and inertial measurement unit (IMU) signals, obtained from 16 non-disabled participants wearing two Myo armbands, served as inputs to RCNN classification and regression models. Such models predicted movements (wrist flexion/extension and forearm pronation/supination), based on a multi-limb-position training routine. RCNN classifiers and RCNN regressors were compared to linear discriminant analysis (LDA) classifiers and support vector regression (SVR) regressors, respectively. Outcomes were examined to determine whether RCNN-based control strategies could yield accurate movement predictions, while using the fewest number of available Myo armband data streams.An RCNN classifier (trained with forearm EMG data, and forearm and upper arm IMU data) predicted movements with 99.00% accuracy (versus the LDA's 97.67%). An RCNN regressor (trained with forearm EMG and IMU data) predicted movements with R2 values of 84.93% for wrist flexion/extension and 84.97% for forearm pronation/supination (versus the SVR's 77.26% and 60.73%, respectively). The control strategies that employed these models required fewer than all available data streams.RCNN-based control strategies offer novel means of mitigating limb position challenges.This research furthers the development of improved position-aware myoelectric prosthesis control." @default.
- W4205653212 created "2022-01-26" @default.
- W4205653212 creator A5025818642 @default.
- W4205653212 creator A5044271733 @default.
- W4205653212 creator A5049208509 @default.
- W4205653212 creator A5050844936 @default.
- W4205653212 creator A5067108969 @default.
- W4205653212 creator A5072517831 @default.
- W4205653212 date "2022-07-01" @default.
- W4205653212 modified "2023-10-16" @default.
- W4205653212 title "Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control" @default.
- W4205653212 cites W1168853092 @default.
- W4205653212 cites W1963745554 @default.
- W4205653212 cites W1969081222 @default.
- W4205653212 cites W1991397260 @default.
- W4205653212 cites W2003345831 @default.
- W4205653212 cites W2013463953 @default.
- W4205653212 cites W2036302957 @default.
- W4205653212 cites W2044628302 @default.
- W4205653212 cites W2045036720 @default.
- W4205653212 cites W2080716911 @default.
- W4205653212 cites W2101843765 @default.
- W4205653212 cites W2119008936 @default.
- W4205653212 cites W2125585124 @default.
- W4205653212 cites W2155893840 @default.
- W4205653212 cites W2171188488 @default.
- W4205653212 cites W2285656057 @default.
- W4205653212 cites W2312839761 @default.
- W4205653212 cites W2331849848 @default.
- W4205653212 cites W2333124383 @default.
- W4205653212 cites W2376290865 @default.
- W4205653212 cites W2436328259 @default.
- W4205653212 cites W2496514119 @default.
- W4205653212 cites W2501720163 @default.
- W4205653212 cites W2516710120 @default.
- W4205653212 cites W2588174855 @default.
- W4205653212 cites W2608411730 @default.
- W4205653212 cites W2700703022 @default.
- W4205653212 cites W2712146091 @default.
- W4205653212 cites W2765746460 @default.
- W4205653212 cites W2767187792 @default.
- W4205653212 cites W2791336312 @default.
- W4205653212 cites W2804301333 @default.
- W4205653212 cites W2807258275 @default.
- W4205653212 cites W2883075544 @default.
- W4205653212 cites W2886903801 @default.
- W4205653212 cites W2908735595 @default.
- W4205653212 cites W2922311477 @default.
- W4205653212 cites W2945281267 @default.
- W4205653212 cites W2947181481 @default.
- W4205653212 cites W2950833354 @default.
- W4205653212 cites W2954642806 @default.
- W4205653212 cites W2965953577 @default.
- W4205653212 cites W2972073716 @default.
- W4205653212 cites W2981877040 @default.
- W4205653212 cites W2991448277 @default.
- W4205653212 cites W2999786443 @default.
- W4205653212 cites W3010195458 @default.
- W4205653212 cites W3013855025 @default.
- W4205653212 cites W3094393440 @default.
- W4205653212 cites W3099835169 @default.
- W4205653212 cites W3117473196 @default.
- W4205653212 cites W3165466478 @default.
- W4205653212 doi "https://doi.org/10.1109/tbme.2022.3140269" @default.
- W4205653212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34986093" @default.
- W4205653212 hasPublicationYear "2022" @default.
- W4205653212 type Work @default.
- W4205653212 citedByCount "7" @default.
- W4205653212 countsByYear W42056532122022 @default.
- W4205653212 countsByYear W42056532122023 @default.
- W4205653212 crossrefType "journal-article" @default.
- W4205653212 hasAuthorship W4205653212A5025818642 @default.
- W4205653212 hasAuthorship W4205653212A5044271733 @default.
- W4205653212 hasAuthorship W4205653212A5049208509 @default.
- W4205653212 hasAuthorship W4205653212A5050844936 @default.
- W4205653212 hasAuthorship W4205653212A5067108969 @default.
- W4205653212 hasAuthorship W4205653212A5072517831 @default.
- W4205653212 hasBestOaLocation W42056532121 @default.
- W4205653212 hasConcept C12267149 @default.
- W4205653212 hasConcept C126838900 @default.
- W4205653212 hasConcept C142724271 @default.
- W4205653212 hasConcept C149635348 @default.
- W4205653212 hasConcept C150594956 @default.
- W4205653212 hasConcept C153180895 @default.
- W4205653212 hasConcept C154945302 @default.
- W4205653212 hasConcept C2777515770 @default.
- W4205653212 hasConcept C2778216619 @default.
- W4205653212 hasConcept C2780214079 @default.
- W4205653212 hasConcept C41008148 @default.
- W4205653212 hasConcept C69738355 @default.
- W4205653212 hasConcept C71924100 @default.
- W4205653212 hasConcept C79061980 @default.
- W4205653212 hasConcept C81363708 @default.
- W4205653212 hasConcept C99508421 @default.
- W4205653212 hasConceptScore W4205653212C12267149 @default.
- W4205653212 hasConceptScore W4205653212C126838900 @default.
- W4205653212 hasConceptScore W4205653212C142724271 @default.
- W4205653212 hasConceptScore W4205653212C149635348 @default.