Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205654785> ?p ?o ?g. }
- W4205654785 abstract "Abstract Temporomandibular disorders are typically accompanied by a number of clinical manifestations that involve pain and dysfunction of the masticatory muscles and temporomandibular joint. The most important subgroup of articular abnormalities in patients with temporomandibular disorders includes patients with different forms of articular disc displacement and deformation. Here, we propose a fully automated articular disc detection and segmentation system to support the diagnosis of temporomandibular disorder on magnetic resonance imaging. This system uses deep learning-based semantic segmentation approaches. The study included a total of 217 magnetic resonance images from 10 patients with anterior displacement of the articular disc and 10 healthy control subjects with normal articular discs. These images were used to evaluate three deep learning-based semantic segmentation approaches: our proposed convolutional neural network encoder-decoder named 3DiscNet (Detection for Displaced articular DISC using convolutional neural NETwork), U-Net, and SegNet-Basic. Of the three algorithms, 3DiscNet and SegNet-Basic showed comparably good metrics (Dice coefficient, sensitivity, and positive predictive value). This study provides a proof-of-concept for a fully automated deep learning-based segmentation methodology for articular discs on magnetic resonance images, and obtained promising initial results, indicating that the method could potentially be used in clinical practice for the assessment of temporomandibular disorders." @default.
- W4205654785 created "2022-01-26" @default.
- W4205654785 creator A5017183294 @default.
- W4205654785 creator A5020298127 @default.
- W4205654785 creator A5020554051 @default.
- W4205654785 creator A5047109652 @default.
- W4205654785 creator A5047595938 @default.
- W4205654785 creator A5051402181 @default.
- W4205654785 creator A5054217012 @default.
- W4205654785 creator A5064552290 @default.
- W4205654785 creator A5073265458 @default.
- W4205654785 creator A5079012926 @default.
- W4205654785 creator A5087055518 @default.
- W4205654785 creator A5089856012 @default.
- W4205654785 date "2022-01-07" @default.
- W4205654785 modified "2023-10-15" @default.
- W4205654785 title "Automated segmentation of articular disc of the temporomandibular joint on magnetic resonance images using deep learning" @default.
- W4205654785 cites W1901129140 @default.
- W4205654785 cites W1965105802 @default.
- W4205654785 cites W2025784069 @default.
- W4205654785 cites W2060874870 @default.
- W4205654785 cites W2083344750 @default.
- W4205654785 cites W2089391535 @default.
- W4205654785 cites W2129477811 @default.
- W4205654785 cites W2569153440 @default.
- W4205654785 cites W2604785265 @default.
- W4205654785 cites W2737373222 @default.
- W4205654785 cites W2799369264 @default.
- W4205654785 cites W2918930673 @default.
- W4205654785 cites W2921941487 @default.
- W4205654785 cites W2928133111 @default.
- W4205654785 cites W2951985572 @default.
- W4205654785 cites W2956190455 @default.
- W4205654785 cites W2963446989 @default.
- W4205654785 cites W2963881378 @default.
- W4205654785 cites W2963911049 @default.
- W4205654785 cites W2966771382 @default.
- W4205654785 cites W2973659729 @default.
- W4205654785 cites W3006913750 @default.
- W4205654785 cites W3015126388 @default.
- W4205654785 cites W3016417837 @default.
- W4205654785 cites W3025590102 @default.
- W4205654785 cites W3030718460 @default.
- W4205654785 cites W3035485193 @default.
- W4205654785 cites W3039618620 @default.
- W4205654785 cites W3039728089 @default.
- W4205654785 cites W3099979553 @default.
- W4205654785 cites W3125570879 @default.
- W4205654785 cites W3127243174 @default.
- W4205654785 cites W3131908523 @default.
- W4205654785 cites W4245265600 @default.
- W4205654785 doi "https://doi.org/10.1038/s41598-021-04354-w" @default.
- W4205654785 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34997167" @default.
- W4205654785 hasPublicationYear "2022" @default.
- W4205654785 type Work @default.
- W4205654785 citedByCount "9" @default.
- W4205654785 countsByYear W42056547852022 @default.
- W4205654785 countsByYear W42056547852023 @default.
- W4205654785 crossrefType "journal-article" @default.
- W4205654785 hasAuthorship W4205654785A5017183294 @default.
- W4205654785 hasAuthorship W4205654785A5020298127 @default.
- W4205654785 hasAuthorship W4205654785A5020554051 @default.
- W4205654785 hasAuthorship W4205654785A5047109652 @default.
- W4205654785 hasAuthorship W4205654785A5047595938 @default.
- W4205654785 hasAuthorship W4205654785A5051402181 @default.
- W4205654785 hasAuthorship W4205654785A5054217012 @default.
- W4205654785 hasAuthorship W4205654785A5064552290 @default.
- W4205654785 hasAuthorship W4205654785A5073265458 @default.
- W4205654785 hasAuthorship W4205654785A5079012926 @default.
- W4205654785 hasAuthorship W4205654785A5087055518 @default.
- W4205654785 hasAuthorship W4205654785A5089856012 @default.
- W4205654785 hasBestOaLocation W42056547851 @default.
- W4205654785 hasConcept C108583219 @default.
- W4205654785 hasConcept C124504099 @default.
- W4205654785 hasConcept C126838900 @default.
- W4205654785 hasConcept C143409427 @default.
- W4205654785 hasConcept C153180895 @default.
- W4205654785 hasConcept C154945302 @default.
- W4205654785 hasConcept C163892561 @default.
- W4205654785 hasConcept C2780202543 @default.
- W4205654785 hasConcept C29694066 @default.
- W4205654785 hasConcept C31972630 @default.
- W4205654785 hasConcept C41008148 @default.
- W4205654785 hasConcept C71924100 @default.
- W4205654785 hasConcept C81363708 @default.
- W4205654785 hasConcept C89600930 @default.
- W4205654785 hasConceptScore W4205654785C108583219 @default.
- W4205654785 hasConceptScore W4205654785C124504099 @default.
- W4205654785 hasConceptScore W4205654785C126838900 @default.
- W4205654785 hasConceptScore W4205654785C143409427 @default.
- W4205654785 hasConceptScore W4205654785C153180895 @default.
- W4205654785 hasConceptScore W4205654785C154945302 @default.
- W4205654785 hasConceptScore W4205654785C163892561 @default.
- W4205654785 hasConceptScore W4205654785C2780202543 @default.
- W4205654785 hasConceptScore W4205654785C29694066 @default.
- W4205654785 hasConceptScore W4205654785C31972630 @default.
- W4205654785 hasConceptScore W4205654785C41008148 @default.
- W4205654785 hasConceptScore W4205654785C71924100 @default.
- W4205654785 hasConceptScore W4205654785C81363708 @default.
- W4205654785 hasConceptScore W4205654785C89600930 @default.