Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205656441> ?p ?o ?g. }
- W4205656441 abstract "<sec> <title>BACKGROUND</title> In the wake of the sudden spread of COVID-19, much of the Italian population practiced behaviors that were incongruous with the protective health measures promoted by the Italian government. </sec> <sec> <title>OBJECTIVE</title> The present study aimed at examining psychological and psychosocial variables that could potentially predict behavioral compliance. </sec> <sec> <title>METHODS</title> An online survey was administered from 18–22 March 2020. There were 2,766 participants (71.7% female, 28.3% male), with an average age of 32.94 years (SD = 13.2; range 18–90 years). Paired sample t-tests were run to compare efficacy perception with behavioral compliance. Mediation and moderated mediation models were constructed to explore the association between perceived efficacy and compliance, mediated by self-efficacy and moderated by risk perception and civic attitudes. Machine learning algorithms were trained on all of the collected psychosocial variables to predict which individuals would be more likely to comply with COVID-19 protective measures. </sec> <sec> <title>RESULTS</title> The results indicated significantly lower scores in behavioral compliance (M = 41.7, SD = 6.20) relative to efficacy perception (M = 44.8, SD = 6.17). The introduction of risk perception and civic attitudes as moderators rendered the mediating effect of self-efficacy insignificant. The impact of perceived efficacy on the adoption of recommended behaviors varied in accordance with risk perception and civic engagement. The best pool of predictors (15 out of 199), identified using the correlation-based feature selector, produced a ROC area in the range of 0.83–0.93 for classifying individuals as high versus low compliance. </sec> <sec> <title>CONCLUSIONS</title> Government awareness communications and campaigns regarding COVID-19 and related protective measures should be tailored to specific segments of the population, as defined by age and level of education. Furthermore, they should emphasize the efficacy of the recommended measures in successfully preventing the virus spread. Finally, they should take into account risk perception and should highlight the importance of civic engagement. </sec> <sec> <title>CLINICALTRIAL</title> N/A </sec>" @default.
- W4205656441 created "2022-01-26" @default.
- W4205656441 creator A5026476893 @default.
- W4205656441 creator A5026657545 @default.
- W4205656441 creator A5036258888 @default.
- W4205656441 creator A5071553648 @default.
- W4205656441 creator A5073894201 @default.
- W4205656441 creator A5080955297 @default.
- W4205656441 creator A5082845765 @default.
- W4205656441 creator A5086237136 @default.
- W4205656441 date "2020-06-10" @default.
- W4205656441 modified "2023-10-16" @default.
- W4205656441 title "How to Improve Compliance with Protective Health Measures During the Covid-19 Outbreak: Testing a Moderated Mediation Model and Machine Learning Algorithms (Preprint)" @default.
- W4205656441 cites W1555759181 @default.
- W4205656441 cites W1558100203 @default.
- W4205656441 cites W1568785227 @default.
- W4205656441 cites W1604502480 @default.
- W4205656441 cites W1941659294 @default.
- W4205656441 cites W1965952026 @default.
- W4205656441 cites W1973755181 @default.
- W4205656441 cites W1975007734 @default.
- W4205656441 cites W1977861494 @default.
- W4205656441 cites W2021217671 @default.
- W4205656441 cites W2031813733 @default.
- W4205656441 cites W2049335277 @default.
- W4205656441 cites W2052222831 @default.
- W4205656441 cites W2081430061 @default.
- W4205656441 cites W2106393550 @default.
- W4205656441 cites W2113580934 @default.
- W4205656441 cites W2122910611 @default.
- W4205656441 cites W2131121933 @default.
- W4205656441 cites W2133990480 @default.
- W4205656441 cites W2140770635 @default.
- W4205656441 cites W2151040995 @default.
- W4205656441 cites W2160326461 @default.
- W4205656441 cites W2161430524 @default.
- W4205656441 cites W2169438603 @default.
- W4205656441 cites W2284729062 @default.
- W4205656441 cites W2744904120 @default.
- W4205656441 cites W2745406168 @default.
- W4205656441 cites W2787427645 @default.
- W4205656441 cites W2807750481 @default.
- W4205656441 cites W2808675583 @default.
- W4205656441 cites W2899165951 @default.
- W4205656441 cites W2999930990 @default.
- W4205656441 cites W3017160146 @default.
- W4205656441 cites W3017740531 @default.
- W4205656441 cites W3020160100 @default.
- W4205656441 cites W3021900567 @default.
- W4205656441 cites W3028392965 @default.
- W4205656441 cites W3033291802 @default.
- W4205656441 cites W4206106378 @default.
- W4205656441 cites W4206822952 @default.
- W4205656441 cites W4236720955 @default.
- W4205656441 cites W4245170851 @default.
- W4205656441 cites W4254799504 @default.
- W4205656441 doi "https://doi.org/10.2196/preprints.21249" @default.
- W4205656441 hasPublicationYear "2020" @default.
- W4205656441 type Work @default.
- W4205656441 citedByCount "0" @default.
- W4205656441 crossrefType "posted-content" @default.
- W4205656441 hasAuthorship W4205656441A5026476893 @default.
- W4205656441 hasAuthorship W4205656441A5026657545 @default.
- W4205656441 hasAuthorship W4205656441A5036258888 @default.
- W4205656441 hasAuthorship W4205656441A5071553648 @default.
- W4205656441 hasAuthorship W4205656441A5073894201 @default.
- W4205656441 hasAuthorship W4205656441A5080955297 @default.
- W4205656441 hasAuthorship W4205656441A5082845765 @default.
- W4205656441 hasAuthorship W4205656441A5086237136 @default.
- W4205656441 hasConcept C118552586 @default.
- W4205656441 hasConcept C150966472 @default.
- W4205656441 hasConcept C15744967 @default.
- W4205656441 hasConcept C163355716 @default.
- W4205656441 hasConcept C169760540 @default.
- W4205656441 hasConcept C17744445 @default.
- W4205656441 hasConcept C179420905 @default.
- W4205656441 hasConcept C199539241 @default.
- W4205656441 hasConcept C24614281 @default.
- W4205656441 hasConcept C26760741 @default.
- W4205656441 hasConcept C2781460075 @default.
- W4205656441 hasConcept C2908647359 @default.
- W4205656441 hasConcept C70410870 @default.
- W4205656441 hasConcept C71924100 @default.
- W4205656441 hasConcept C77805123 @default.
- W4205656441 hasConcept C99454951 @default.
- W4205656441 hasConceptScore W4205656441C118552586 @default.
- W4205656441 hasConceptScore W4205656441C150966472 @default.
- W4205656441 hasConceptScore W4205656441C15744967 @default.
- W4205656441 hasConceptScore W4205656441C163355716 @default.
- W4205656441 hasConceptScore W4205656441C169760540 @default.
- W4205656441 hasConceptScore W4205656441C17744445 @default.
- W4205656441 hasConceptScore W4205656441C179420905 @default.
- W4205656441 hasConceptScore W4205656441C199539241 @default.
- W4205656441 hasConceptScore W4205656441C24614281 @default.
- W4205656441 hasConceptScore W4205656441C26760741 @default.
- W4205656441 hasConceptScore W4205656441C2781460075 @default.
- W4205656441 hasConceptScore W4205656441C2908647359 @default.
- W4205656441 hasConceptScore W4205656441C70410870 @default.
- W4205656441 hasConceptScore W4205656441C71924100 @default.
- W4205656441 hasConceptScore W4205656441C77805123 @default.