Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205657150> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4205657150 abstract "<sec> <title>BACKGROUND</title> Liver disease is one of the leading causes of death worldwide. Chronic liver disease may lead to cirrhosis of the liver in which the main complications of cirrhosis include ascites. All patients, even in cases of suspected cirrhosis, need to be examined for the causes of ascites. Patients with cirrhosis and ascites often go to transplant centers for evaluation of liver transplants and, therefore, there is a need for accurate prognostic models for the diagnosis of ascites, especially in patients with cirrhosis and ascites. </sec> <sec> <title>OBJECTIVE</title> The aim of the study was to implement a non-invasive model to predict ascites grades among patients with cirrhosis. </sec> <sec> <title>METHODS</title> In the present study, we used modern machine learning (ML) methods to develop a scoring system solely based on routine laboratory and clinical data to help physicians accurately diagnose and predict different degrees of ascites. We used ANACONDA3–5.2.0 64 bit, free and open-source platform distribution of Python programming language with numerous modules, packages, and rich libraries that provide various methods for classification problems. Through the 10-fold cross validation, we employed three common learning models on our dataset, k-nearest neighbors (KNN), Support Vector Machine (SVM), and neural network classification algorithms. </sec> <sec> <title>RESULTS</title> According to the data received from the research institute, three types of data analysis have been performed. The algorithms used to predict ascites were KNN, cross-validation (CV), and Multilayer Perceptron Neural Networks (MLPNN), which achieved an average accuracy of 94%, 91, and 90%, respectively. Also in the average accuracy of the algorithms, KNN had the highest accuracy of 94%. </sec> <sec> <title>CONCLUSIONS</title> We applied well-known ML approaches to predict ascites that the findings showed a strong performance in comparison with the classical statistical approaches. This ML-based approach can help to avoid unnecessary risks and costs for patients with acute stages of the disease. </sec>" @default.
- W4205657150 created "2022-01-25" @default.
- W4205657150 creator A5004425214 @default.
- W4205657150 creator A5031016449 @default.
- W4205657150 creator A5058870460 @default.
- W4205657150 creator A5060012355 @default.
- W4205657150 creator A5073876018 @default.
- W4205657150 date "2022-01-17" @default.
- W4205657150 modified "2023-09-28" @default.
- W4205657150 title "Machine Learning–Based Detection System for ascites in patients with liver cirrhosis Using Laboratory and Clinical Data: Design and Implementation Study (Preprint)" @default.
- W4205657150 cites W1939224548 @default.
- W4205657150 cites W1968891894 @default.
- W4205657150 cites W1979124801 @default.
- W4205657150 cites W2001137775 @default.
- W4205657150 cites W2045979348 @default.
- W4205657150 cites W2069388901 @default.
- W4205657150 cites W2086721895 @default.
- W4205657150 cites W2088509242 @default.
- W4205657150 cites W2098100677 @default.
- W4205657150 cites W2134481878 @default.
- W4205657150 cites W2142711599 @default.
- W4205657150 cites W2404084286 @default.
- W4205657150 cites W2416980505 @default.
- W4205657150 cites W2755364614 @default.
- W4205657150 cites W2778759966 @default.
- W4205657150 cites W2788800442 @default.
- W4205657150 cites W2795958278 @default.
- W4205657150 cites W2899909823 @default.
- W4205657150 cites W2907716967 @default.
- W4205657150 cites W2911939241 @default.
- W4205657150 cites W2917277724 @default.
- W4205657150 cites W2944233989 @default.
- W4205657150 cites W3095201281 @default.
- W4205657150 cites W3097224450 @default.
- W4205657150 cites W3156275539 @default.
- W4205657150 cites W3164121810 @default.
- W4205657150 cites W3199566263 @default.
- W4205657150 cites W4242127061 @default.
- W4205657150 cites W4247948632 @default.
- W4205657150 cites W901036528 @default.
- W4205657150 doi "https://doi.org/10.2196/preprints.36567" @default.
- W4205657150 hasPublicationYear "2022" @default.
- W4205657150 type Work @default.
- W4205657150 citedByCount "0" @default.
- W4205657150 crossrefType "posted-content" @default.
- W4205657150 hasAuthorship W4205657150A5004425214 @default.
- W4205657150 hasAuthorship W4205657150A5031016449 @default.
- W4205657150 hasAuthorship W4205657150A5058870460 @default.
- W4205657150 hasAuthorship W4205657150A5060012355 @default.
- W4205657150 hasAuthorship W4205657150A5073876018 @default.
- W4205657150 hasConcept C11413529 @default.
- W4205657150 hasConcept C119857082 @default.
- W4205657150 hasConcept C12267149 @default.
- W4205657150 hasConcept C126322002 @default.
- W4205657150 hasConcept C154945302 @default.
- W4205657150 hasConcept C179717631 @default.
- W4205657150 hasConcept C2777075537 @default.
- W4205657150 hasConcept C2777214474 @default.
- W4205657150 hasConcept C2779102576 @default.
- W4205657150 hasConcept C2780496750 @default.
- W4205657150 hasConcept C41008148 @default.
- W4205657150 hasConcept C50644808 @default.
- W4205657150 hasConcept C71924100 @default.
- W4205657150 hasConcept C90924648 @default.
- W4205657150 hasConceptScore W4205657150C11413529 @default.
- W4205657150 hasConceptScore W4205657150C119857082 @default.
- W4205657150 hasConceptScore W4205657150C12267149 @default.
- W4205657150 hasConceptScore W4205657150C126322002 @default.
- W4205657150 hasConceptScore W4205657150C154945302 @default.
- W4205657150 hasConceptScore W4205657150C179717631 @default.
- W4205657150 hasConceptScore W4205657150C2777075537 @default.
- W4205657150 hasConceptScore W4205657150C2777214474 @default.
- W4205657150 hasConceptScore W4205657150C2779102576 @default.
- W4205657150 hasConceptScore W4205657150C2780496750 @default.
- W4205657150 hasConceptScore W4205657150C41008148 @default.
- W4205657150 hasConceptScore W4205657150C50644808 @default.
- W4205657150 hasConceptScore W4205657150C71924100 @default.
- W4205657150 hasConceptScore W4205657150C90924648 @default.
- W4205657150 hasLocation W42056571501 @default.
- W4205657150 hasOpenAccess W4205657150 @default.
- W4205657150 hasPrimaryLocation W42056571501 @default.
- W4205657150 hasRelatedWork W10358853 @default.
- W4205657150 hasRelatedWork W2075563 @default.
- W4205657150 hasRelatedWork W2321733 @default.
- W4205657150 hasRelatedWork W237466 @default.
- W4205657150 hasRelatedWork W3540334 @default.
- W4205657150 hasRelatedWork W378023 @default.
- W4205657150 hasRelatedWork W4871852 @default.
- W4205657150 hasRelatedWork W6034197 @default.
- W4205657150 hasRelatedWork W6878908 @default.
- W4205657150 hasRelatedWork W845024 @default.
- W4205657150 isParatext "false" @default.
- W4205657150 isRetracted "false" @default.
- W4205657150 workType "article" @default.