Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205658701> ?p ?o ?g. }
- W4205658701 endingPage "241" @default.
- W4205658701 startingPage "1" @default.
- W4205658701 abstract "Free Access Bibliography Prof., Dr. Roberto Todeschini, Prof., Dr. Roberto Todeschini Dept. of Environm. Sciences, University Milano-Bicocca, Piazza della Scienza 1, 0126 Milano, ItalySearch for more papers by this authorDr. Viviana Consonni, Dr. Viviana Consonni Dept. of Environm. Sciences, University Milano-Bicocca, Piazza della Scienza 1, 0126 Milano, ItalySearch for more papers by this author Book Author(s):Prof., Dr. Roberto Todeschini, Prof., Dr. Roberto Todeschini Dept. of Environm. Sciences, University Milano-Bicocca, Piazza della Scienza 1, 0126 Milano, ItalySearch for more papers by this authorDr. Viviana Consonni, Dr. Viviana Consonni Dept. of Environm. Sciences, University Milano-Bicocca, Piazza della Scienza 1, 0126 Milano, ItalySearch for more papers by this author First published: 15 July 2009 https://doi.org/10.1002/9783527628766.biblioCitations: 1Book Series:Methods and Principles in Medicinal Chemistry Series Editor(s): Prof. Dr. Raimund Mannhold, Prof. Dr. Raimund Mannhold Molecular Drug Research Group, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, GermanySearch for more papers by this authorProf., Dr. Hugo Kubinyi, Prof., Dr. Hugo Kubinyi Donnersbergstrasse 9, 67256 Weisenheim am Sand, GermanySearch for more papers by this authorProf. Dr. Gerd Folkers, Prof. Dr. Gerd Folkers Collegium Helveticum, STW/ETH Zurich, 8092 Zurich, SwitzerlandSearch for more papers by this author AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Citing Literature Bibliography A-Razzak, M. and Glen, R.C. (1992) Application of rule-induction in the derivation of quantitative structure–activity relationships. J. Comput. Aid. Mol. Des., 6, 349– 383. CrossrefCASPubMedWeb of Science®Google Scholar Abe, I., Tatsumoto, H. and Hirashima, T. (1986) Prediction of activated carbon adsorption by adsorbability index (AI). Suishitsu Odaku Kenkyu, 9, 153– 161. Google Scholar Åberg, K.M. and Jacobsson, S.P. (2001) Pre-processing of three-way data by pulse-coupled neural networks – an imaging approach. Chemom. Intell. Lab. Syst., 57, 25– 36. CrossrefWeb of Science®Google Scholar Aboushaaban, R.R., Alkhamees, H.A., Abouauda, H.S. and Simonelli, A.P. (1996) Atom level electrotopological state indexes in QSAR designing and testing antithyroid agents. Pharm. Res., 13, 129– 136. CrossrefCASPubMedWeb of Science®Google Scholar Abraham, D.J. and Kellogg, G.E. (1993) Hydrophobic fields, in 3D QSAR in Drug Design. Theory, Methods and Applications (ed. H. Kubinyi), ESCOM, Leiden, The Netherlands, pp. 506– 520. Google Scholar Abraham, D.J. and Leo, A. (1987) Amino acid scale: hydrophobicity (delta G1/2 cal). Prot. Struct. Funct. Gen., 2, 130– 152. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Abraham, M.H. (1993a) Application of solvation equations to chemical and biochemical processes. Pure & Appl. Chem., 65, 2503– 2512. CrossrefCASWeb of Science®Google Scholar Abraham, M.H. (1993b) Hydrogen bonding. Part 31. Construction of a scale of solute effective or summation hydrogen bond basicity. J. Phys. Org. Chem., 6, 660– 684. Wiley Online LibraryCASWeb of Science®Google Scholar Abraham, M.H. (1993c) Physicochemical and biological processes. Chem. Soc. Rev., 22, 73– 83. CrossrefCASWeb of Science®Google Scholar Abraham, M.H. (1993d) Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev., 22, 73– 83. CrossrefCASWeb of Science®Google Scholar Abraham, M.H., Andonian-Haftvan, J., Cometto Muniz, J.E. and Cain, W.S. (1996) An analysis of nasal irritation thresholds using a new solvation equation. Fund. Appl. Toxicol., 31, 71– 76. CrossrefCASPubMedWeb of Science®Google Scholar Abraham, M.H., Andonian-Haftvan, J., Whiting, G.S., Leo, A. and Taft, R.S. (1994) Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination. J. Chem. Soc. Perkin Trans. 2, 1777– 1791. CrossrefCASWeb of Science®Google Scholar Abraham, M.H., Chadha, H.S., Dixon, J.P. and Leo, A.J. (1994a) Hydrogen bonding. 39. The partition of solutes between water and various alcohols. J. Phys. Org. Chem., 7, 712– 716. Wiley Online LibraryCASWeb of Science®Google Scholar Abraham, M.H., Chadha, H.S., Dixon, J.P., Rafols, C. and Treiner, C. (1995a) Hydrogen bonding. Part 40. Factors that influence the distribution of solutes between water and sodium dodecylsulfate micelles. J. Chem. Soc. Perkin Trans. 2, 887– 894. CrossrefWeb of Science®Google Scholar Abraham, M.H., Chadha, H.S. and Mitchell, R.C. (1994b) Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J. Pharm. Sci., 83, 1257– 1268. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Abraham, M.H., Chadha, H.S. and Mitchell, R.C. (1995b) Hydrogen bonding. Part 36. Determination of blood brain distribution using octanol–water partition coefficients. Drug Design & Discovery, 13, 123– 131. CASPubMedGoogle Scholar Abraham, M.H., Duce, P.P., Prior, D.V., Barratt, D.G., Morris, J.J. and Taylor, P.J. (1989) Hydrogen bonding. Part 9. Solute proton donor and proton acceptor scales for use in drug design. J. Chem. Soc. Perkin Trans. 2, 1355– 1375. CrossrefWeb of Science®Google Scholar Abraham, M.H., Green, C.E. and Acree, W.E., Jr (2000) Correlation and prediction of the solubility of buckminsterfullerene in organic solvents; estimation of some physicochemical properties. J. Chem. Soc. Perkin Trans. 2, 281– 286. CrossrefCASWeb of Science®Google Scholar Abraham, M.H., Green, C.E., Acree, W.E., Jr, Hernandez, C.E. and Roy, L.E. (1998) Descriptors for solutes from the solubility of solids: trans-stilbene as an example. J. Chem. Soc. Perkin Trans. 2, 2677– 2681. CrossrefCASWeb of Science®Google Scholar Abraham, M.H., Grellier, P.L., Hamerton, I., McGill, R.A., Prior, D.V. and Whiting, G.S. (1988) Solvation of gaseous non-electrolytes. Faraday Discuss. Chem. Soc., 85, 107– 115. CrossrefCASWeb of Science®Google Scholar Abraham, M.H., Grellier, P.L. and McGill, R.A. (1987) Determination of olive oil–gas and hexadecane–gas partition coefficients, and calculation of the corresponding olive oil–water and hexadecane–water partition coefficients. J. Chem. Soc. Perkin Trans. 2, 797– 803. CrossrefCASWeb of Science®Google Scholar Abraham, M.H., Grellier, P.L., Prior, D.V., Duce, P.P., Morris, J.J. and Taylor, P.J. (1989) Hydrogen bonding. Part 7. A scale of solute hydrogen-bond acidity based on log K values for complexation in tetrachloromethane. J. Chem. Soc. Perkin Trans. 2, 699– 711. CrossrefWeb of Science®Google Scholar Abraham, M.H., Grellier, P.L., Prior, D.V., Morris, J.J. and Taylor, P.J. (1990) Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane. J. Chem. Soc. Perkin Trans. 2, 521– 529. CrossrefWeb of Science®Google Scholar Abraham, M.H., Ibrahim, A. and Acree, W.E., Jr (2005) Air to blood distribution of volatile organic compounds: a linear free energy analysis. Chem. Res. Toxicol., 18, 904– 911. CrossrefCASPubMedWeb of Science®Google Scholar Abraham, M.H., Ibrahim, A. and Zissimos, A.M. (2004) Determination of sets of solute descriptors from chromatographic measurements. J. Chromat., 1037, 29– 47. CrossrefCASPubMedWeb of Science®Google Scholar Abraham, M.H., Ibrahim, A., Zissimos, A.M., Zhao, Y.H., Comer, J. and Reynolds, D.P. (2002) Application of hydrogen bonding calculations in property based drug design. Drug Discov. Today, 7, 1056– 1063. CrossrefCASPubMedWeb of Science®Google Scholar Abraham, M.H. and Le, J. (1999) The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J. Pharm. Sci., 88, 868– 880. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Abraham, M.H., Lieb, W.R. and Franks, N.P. (1991) Role of hydrogen bonding in general anesthesia. J. Pharm. Sci., 80, 719– 724. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Abraham, M.H., Martins, F. and Mitchell, R.C. (1997) Algorithms for skin permeability using hydrogen bond descriptors: the problem of steroids. J. Pharm. Pharmacol., 49, 858– 865. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Abraham, M.H. and McGowan, J.C. (1987) The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia, 23, 243– 246. CrossrefCASWeb of Science®Google Scholar Abraham, M.H. and Platts, J.A. (2001) Hydrogen bond structural group constants. J. Org. Chem., 66, 3484– 3491. CrossrefCASPubMedWeb of Science®Google Scholar Abraham, M.H. and Rafols, C. (1995) Factors that influence tadpole narcosis. An LFER analysis. J. Chem. Soc. Perkin Trans. 2, 1843– 1851. CrossrefWeb of Science®Google Scholar Abraham, M.H. and Whiting, G.S. (1992) Hydrogen bonding. XXI. Solvation parameters for alkylaromatic hydrocarbons from gas–liquid chromatographic data. J. Chromat., 594, 229– 241. CrossrefCASWeb of Science®Google Scholar Abraham, M.H., Whiting, G.S., Alarie, Y., Morris, J.J., Taylor, P.J., Doherty, R.M., Taft, R.W. and Nielsen, G.D. (1990a) Hydrogen bonding. Part 12. A new QSAR for upper respiratory tract irritation by airborne chemicals in mice. Quant. Struct. -Act. Relat., 9, 6– 10. Wiley Online LibraryCASWeb of Science®Google Scholar Abraham, M.H., Whiting, G.S., Carr, P.W. and Ouyang, H. (1998) Hydrogen bonding. Part 45. The solubility of gases and vapours in methanol at 298 K: an LFER analysis. J. Chem. Soc. Perkin Trans. 2, 1385– 1390. CrossrefWeb of Science®Google Scholar Abraham, M.H., Whiting, G.S., Doherty, R.M. and Shuely, W.J. (1990b) Hydrogen bonding. Part 13. A new method for the characterisation of GLC stationary phases – the Laffort data set. J. Chem. Soc. Perkin Trans. 2, 1451– 1460. CrossrefWeb of Science®Google Scholar Abraham, M.H., Whiting, G.S., Doherty, R.M. and Shuely, W.J. (1991a) Hydrogen bonding. XVI. A new solute solvation parameter, πH 2 , from gas chromatographic data. J. Chromat., 587, 213– 228. CrossrefCASWeb of Science®Google Scholar Abraham, M.H., Whiting, G.S., Doherty, R.M. and Shuely, W.J. (1991b) Hydrogen bonding. XVII. The characterisation of 24 gas–liquid chromatographic stationary phases studied by Poole and co-workers, including molten salts, and evaluation of solute–stationary phase interactions. J. Chromat., 587, 229– 236. CrossrefCASWeb of Science®Google Scholar Abraham, R.J. and Smith, P.E. (1988) Charge calculations in molecular mechanics. IV. A general method for conjugated systems. J. Comput. Chem., 9, 288– 297. Wiley Online LibraryCASWeb of Science®Google Scholar Abrahamian, E., Fox, P.C., Nærum, L., Christensen, I.T., Thøgersen, H. and Clark, R.D. (2003) Efficient generation, storage, and manipulation of fully flexible pharmacophore multiplets and their use in 3D similarity searching. J. Chem. Inf. Comput. Sci., 43, 458– 468. CrossrefCASPubMedWeb of Science®Google Scholar Abramowitz, R. and Yalkowsky, S.H. (1990) Estimation of aqueous solubility and melting point of PCB congeners. Chemosphere, 21, 1221– 1229. CrossrefCASWeb of Science®Google Scholar Absalan, G., Hemmateenejad, B., Soleimani, M., Akhond, M. and Miri, R. (2004) Quantitative structure–micellization relationship study of gemini surfactants using genetic-PLS and genetic-MLR. QSAR Comb. Sci., 23, 416– 425. Wiley Online LibraryCASWeb of Science®Google Scholar Acevedo-Martínez, J., Escalona-Arranz, J.C., Villar-Rojas, A., Téllez-Palmero, F., Pérez-Rosés, R., González, L. and Carrasco-Velar, R. (2006) Quantitative study of the structure–retention index relationship in the imine family. J. Chromat., 1102, 238– 244. CrossrefCASPubMedWeb of Science®Google Scholar Adams, N. and Schubert, U.S. (2004) From data to knowledge: chemical data management, data mining, and modeling in polymer science. J. Comb. Chem., 6, 12– 23. CrossrefCASPubMedWeb of Science®Google Scholar Adamson, G.W., Lynch, M.F. and Town, W.G. (1971) Analysis of structural characteristics of chemical compounds in a large computer-based file. Part II. Atom-centred fragments. J. Chem. Soc., (C), 3702– 3706. Web of Science®Google Scholar ADAPT, Jurs, P.C., Pennsylvania State University, PA, http://research.chem.psu.edu/pcjgroup/adapt.html. Google Scholar Afantitis, A., Melagraki, G., Makridima, K., Alexandridis, A., Sarimveis, H. and Iglessi-Markopoulou, O. (2005) Prediction of high weight polymers glass transition temperature using RBF neural networks. J. Mol. Struct. (Theochem), 716, 193– 198. CrossrefCASWeb of Science®Google Scholar Afantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P.A., Markopoulos, J. and Iglessi-Markopoulou, O. (2006) A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis. Mol. Div., 10, 405– 414. CrossrefCASPubMedWeb of Science®Google Scholar Affolter, C., Baumann, K., Clerc, J.T., Schriber, H. and Pretsch, E. (1997) Automatic interpretation of infrared spectra. Mikrochim. Acta, 14, 143– 147. CASGoogle Scholar Afzelius, L., Masimirembwa, C.M., Karlén, A., Andersson, T.B. and Zamora, I. (2002) Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors. J. Comput. Aid. Mol. Des., 16, 443– 458. CrossrefCASPubMedWeb of Science®Google Scholar Agarwal, A., Pearson, P.P., Taylor, E.W., Li, H.B., Dahlgren, T., Herslof, M., Yang, Y.H., Lambert, G., Nelson, D.L., Regan, J.W. and Martin, A.R. (1993) Three dimensional quantitative structure–activity relationships of 5-HT receptor binding data for tetrahydropyridinylindole derivatives. A comparison of the Hansch and CoMFA methods. J. Med. Chem., 36, 4006– 4014. CrossrefCASPubMedWeb of Science®Google Scholar Agarwal, K.K. (1998) An algorithm for computing the automorphism group of organic structures with stereochemistry and a measure of its efficiency. J. Chem. Inf. Comput. Sci., 38, 402– 404. CrossrefCASWeb of Science®Google Scholar Agatonovic-Kustrin, S., Beresford, R. and Yusof, A.P.M. (2001) Theoretically derived molecular descriptors important in human intestinal absorption. J. Pharm. Biomed. Anal., 25, 227– 237. CrossrefCASPubMedWeb of Science®Google Scholar Agrafiotis, D.K. (1997) On the use of information theory for assessing molecular diversity. J. Chem. Inf. Comput. Sci., 37, 576– 580. CrossrefCASWeb of Science®Google Scholar Agrafiotis, D.K., Bandyopadhyay, D., Wegner, J.K. and van Vlijmen, H. (2007) Recent advances in chemoinformatics. J. Chem. Inf. Model., 47, 1279– 1293. CrossrefCASPubMedWeb of Science®Google Scholar Agrafiotis, D.K., Cedeño, W. and Lobanov, V.S. (2002) On the use of neural network ensembles in QSAR and QSPR. J. Chem. Inf. Comput. Sci., 42, 903– 911. CrossrefCASPubMedWeb of Science®Google Scholar Agrafiotis, D.K. and Lobanov, V.S. (1999) An efficient implementation of distance-based diversity measures based on k–d trees. J. Chem. Inf. Comput. Sci., 39, 51– 58. CrossrefCASWeb of Science®Google Scholar Agrafiotis, D.K. and Rassokhin, D.N. (2002) A fractal approach for selecting an appropriate bin size for cell-based diversity estimation. J. Chem. Inf. Comput. Sci., 42, 117– 122. CrossrefCASPubMedWeb of Science®Google Scholar Agrafiotis, D.K. and Xu, H. (2003) A geodesic framework for analyzing molecular similarities. J. Chem. Inf. Comput. Sci., 43, 475– 484. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Bano, S. and Khadikar, P.V. (2003a) QSAR study on 5-lipoxygenase inhibitors using distance-based topological indices. Bioorg. Med. Chem., 11, 5519– 5527. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Bano, S. and Khadikar, P.V. (2003b) Topological approach to quantifying molecular lipophilicity of heterogeneous set of organic compounds. Bioorg. Med. Chem., 11, 4039– 4047. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Chaturvedi, S.C., Abraham, M.H. and Khadikar, P.V. (2003) QSAR study on tadpole narcosis. Bioorg. Med. Chem., 11, 4523– 4533. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Gupta, M., Singh, J. and Khadikar, P.V. (2005) A novel method of estimation of lipophilicity using distance-based topological indices: dominating role of equalized electronegativity. Bioorg. Med. Chem., 13, 2109– 2120. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Karmarkar, S. and Khadikar, P.V. (2002) QSAR study on competition binding of rodenticides (PATs) to H1 receptor in rat and guinea pig brain. Bioorg. Med. Chem., 10, 2913– 2918. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Karmarkar, S., Khadikar, P.V. and Shrivastava, S. (2003) Use of distance-based topological indices in modeling antihypertensive activity: case of 2-aryl-imino-imidazolines. Indian J. Chem., 42, 1426– 1435. Web of Science®Google Scholar Agrawal, V.K. and Khadikar, P.V. (2001) QSAR prediction of toxicity of nitrobenzenes. Bioorg. Med. Chem., 9, 3035– 3040. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K. and Khadikar, P.V. (2002) QSAR study on narcotic mechanism of action and toxicity: a molecular connectivity approach to Vibrio fischeri toxicity testing. Bioorg. Med. Chem., 10, 3517– 3522. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Sharma, R. and Khadikar, P.V. (2002) QSAR studies on carbonic anhydrase inhibitors: a case of ureido and thioureido derivatives of aromatic/heterocyclic sulfonamides. Bioorg. Med. Chem., 10, 2993– 2999. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Singh, J. and Khadikar, P.V. (2002) On the topological evidences for modeling lipophilicity. Bioorg. Med. Chem., 10, 3981– 3996. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Singh, J., Louis, B., Joshi, S., Joshi, A. and Khadikar, P.V. (2006) The topology of molecule and its lipophilicity. Curr. Comput. -Aided Drug Des., 2, 369– 403. CrossrefCASWeb of Science®Google Scholar Agrawal, V.K., Singh, K. and Khadikar, P.V. (2004) QSAR studies on adenosine kinase inhibitors. Med. Chem. Res., 13, 479– 496. CrossrefCASWeb of Science®Google Scholar Agrawal, V.K., Sohgaura, R. and Khadikar, P.V. (2002) QSAR studies on biological activity of piritrexim analogues against pc DHFR. Bioorg. Med. Chem., 10, 2919– 2926. CrossrefCASPubMedWeb of Science®Google Scholar Agrawal, V.K., Srivastava, S. and Khadikar, P.V. (2004) QSAR study on phosphoramidothioate (Ace) toxicities in housefly. Mol. Div., 8, 413– 419. CrossrefCASPubMedWeb of Science®Google Scholar Ahmad, P., Fyfe, C.A. and Mellors, A. (1975) Parachors in drug design. Biochem. Pharmacol., 24, 1103– 1110. CrossrefCASPubMedWeb of Science®Google Scholar Ai, N., DeLisle, R.K., Yu, S.J. and Welsh, W.J. (2003) Computational models for predicting the binding affinities of ligands for the wild-type androgen receptor and a mutated variant associated with human prostate cancer. Chem. Res. Toxicol., 16, 1652– 1660. CrossrefCASPubMedWeb of Science®Google Scholar Aihara, J. (1976) A generalized total π-energy index for a conjugated hydrocarbon. J. Org. Chem., 41, 2488– 2490. CrossrefCASWeb of Science®Google Scholar Aihara, J. (1977a) Aromatic sextets and aromaticity in benzenoid hydrocarbons. Bull. Chem. Soc. Jap., 50, 2010– 2012. CrossrefCASWeb of Science®Google Scholar Aihara, J. (1977b) Resonance energies of benzenoid hydrocarbons. J. Am. Chem. Soc., 99, 2048– 2053. CrossrefCASWeb of Science®Google Scholar Aihara, J. (1978) Resonance energies of nonbenzenoid hydrocarbons. Bull. Chem. Soc. Jap., 51, 3540– 3543. CrossrefCASWeb of Science®Google Scholar Aires-de-Sousa, J. (2003) Representation of molecular chirality, in Handbook of Chemoinformatics, Vol. 3 (ed. J. Gasteiger), Wiley-VCH Verlag GmbH, Weinheim, Germany, pp. 1062– 1078. Wiley Online LibraryGoogle Scholar Aires-de-Sousa, J. and Gasteiger, J. (2001) New description of molecular chirality and its application to the prediction of the preferred enantiomer in stereoselective reactions. J. Chem. Inf. Comput. Sci., 41, 369– 375. CrossrefCASPubMedWeb of Science®Google Scholar Aires-de-Sousa, J. and Gasteiger, J. (2002) Prediction of enantiomeric selectivity in chromatography. Application of conformation-dependent and conformation-independent descriptors of molecular chirality. J. Mol. Graph. Model., 20, 373– 388. CrossrefCASPubMedWeb of Science®Google Scholar Ajay, Walters, W.P. and Murcko, M.A. (1998) Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J. Med. Chem., 41, 3314– 3324. CrossrefCASPubMedWeb of Science®Google Scholar Akagi, T., Mitani, S., Komyoji, T. and Nagatani, K. (1995) Quantitative structure–activity relationships of fluazinam and related fungicidal N-phenylpyridinamines preventive activity against Botrytis cinerea . J. Pestic. Sci., 20, 279– 290. CrossrefCASWeb of Science®Google Scholar Akaike, H. (1974) A new look at the statistical model identification. IEEE Transaction of Automatic Control, AC-19, 716– 723. CrossrefCASWeb of Science®Google Scholar Al-Fahemi, J.H., Cooper, D.L. and Allan, N.L. (2005) The use of momentum–space descriptors for predicting octanol–water partition coefficients. J. Mol. Struct. (Theochem), 727, 57– 61. CrossrefCASWeb of Science®Google Scholar Albahri, T.A. and George, R.S. (2003) Artificial neural network investigation of the structural group contribution method for predicting pure components auto ignition temperature. Ind. Eng. Chem. Res., 42, 5708– 5714. CrossrefCASWeb of Science®Google Scholar Albert, R., Jeong, H. and Barabási, A.-L. (1999) Diameter of the World Wide Web. Nature, 401, 130. CrossrefCASWeb of Science®Google Scholar Albuquerque, M.G., Hopfinger, A.J., Barreiro, E.J. and de Alencastro, R.B. (1998) Four-dimensional quantitative structure–activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists. J. Chem. Inf. Comput. Sci., 38, 925– 938. CrossrefCASPubMedWeb of Science®Google Scholar Alifrangis, L.H., Christensen, I.T., Berglund, A., Sandberg, M., Hovgaard, L. and Frokjaer, S. (2000) Structure–property model for membrane partitioning of oligopeptides. J. Med. Chem., 43, 103– 113. CrossrefCASPubMedWeb of Science®Google Scholar Alikhanidi, S. and Takahashi, Y. (2006) New molecular fragmental descriptors and their application to the prediction of fish toxicity. MATCH Commun. Math. Comput. Chem., 55, 205– 232. Web of Science®Google Scholar Alkorta, I., Rozas, I. and Elguero, J. (1998) Bond length–electron density relationships: from covalent bonds to hydrogen bond interactions. Struct. Chem., 9, 243– 247. CrossrefCASWeb of Science®Google Scholar Allen, B.C.P., Grant, G.H. and Richards, W.G. (2001) Similarity calculations using two-dimensional molecular representations. J. Chem. Inf. Comput. Sci., 41, 330– 337. CrossrefCASPubMedWeb of Science®Google Scholar Allen, B.C.P., Grant, G.H. and Richards, W.G. (2003) Calculation of protein domain structural similarity using two-dimensional representations. J. Chem. Inf. Comput. Sci., 43, 134– 143. CrossrefCASPubMedWeb of Science®Google Scholar Allen, D.M. (1971) Mean square error of prediction as a criterion for selecting variables. Technometrics, 13, 469– 475. CrossrefWeb of Science®Google Scholar Allen, D.M. (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics, 16, 125– 127. CrossrefWeb of Science®Google Scholar Allen, F.H., Bath, P.A. and Willett, P. (1995) Angular spectroscopy: rapid visualization of three-dimensional substructure dissimilarity using valence angle or torsional descriptors. J. Chem. Inf. Comput. Sci., 35, 261– 271. CrossrefWeb of Science®Google Scholar Allerhand, A. and Schleyer, P.V.R. (1963a) Nitriles and isonitriles as proton acceptors in hydrogen bonding: correlation of ΔνOH with acceptor structure. J. Am. Chem. Soc., 85, 866– 870. CrossrefCASWeb of Science®Google Scholar Allerhand, A. and Schleyer, P.V.R. (1963b) Solvent effects in infrared spectroscopic studies of hydrogen bonding. J. Am. Chem. Soc., 85, 371– 380. CrossrefCASWeb of Science®Google Scholar Allred, A. and Rochow, E.G. (1958) A scale of electronegativity based on electronic forces. J. Inorg. Nuc. Chem., 5, 264– 268. CrossrefCASWeb of Science®Google Scholar Allred, A. and Rochow, E.G. (1961) Electronegativity values from thermochemical data. J. Inorg. Nuc. Chem., 17, 215– 221. CrossrefCASWeb of Science®Google Scholar Almerico, A.M., Lauria, A., Tutone, M., Diana, P., Barraja, P., Montalbano, A., Cirrincione, G. and Dattolo, G. (2003) A multivariate analysis on non-nucleoside HIV-1 reverse transcriptase inhibitors and resistance induced by mutation. QSAR Comb. Sci., 22, 984– 996. Wiley Online LibraryCASWeb of Science®Google Scholar ALMOND, Ver. 2.0, Multivariate Infometric Analysis s.r.l., Viale dei Castagni 16, Perugia, Italy. Google Scholar Alsberg, B.K. (1990) Molecular reference (MOLREF), a new method in quantitative structure–activity relationships (QSAR). Chemom. Intell. Lab. Syst., 8, 173– 181. CrossrefCASWeb of Science®Google Scholar Alsberg, B.K. (2000) Parsimonious multiscale classification models. J. Chemom., 14, 529– 539. Wiley Online LibraryCASWeb of Science®Google Scholar Alsberg, B.K., Woodward, A.M., Winson, M.K., Rowland, J.J. and Kell, D.B. (1998) Variable selection in wavelet regression models. Anal. Chim. Acta, 368, 29– 44. CrossrefCASWeb of Science®Google Scholar Altenburg, K. (1961) Zur Berechnung des Radius Verweighter Molekule. Kolloid Zeitschr., 178, 112– 117. CrossrefCASWeb of Science®Google Scholar Altenburg, K. (1980) Eine Bemerkung zu dem Randicschen “Molekularen Bindungs-Index”. Z. Phys. Chemie (German), 261, 389– 393. CrossrefWeb of Science®Google Scholar Altomare, C., Carotti, A., Trapani, G. and Liso, G. (1997) Estimation of partitioning parameters of nonionic surfactants using calculated descriptors of molecular size, polarity, and hydrogen bonding. J. Pharm. Sci., 86, 1417– 1425. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Altomare, C., Carrupt, P.-A., Gaillard, P., El Tayar, N., Testa, B. and Carotti, A. (1992) Quantitative structure–metabolism relationship analyses of MAO-mediated toxication of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analogues. Chem. Res. Toxicol., 5, 366– 375. CrossrefCASPubMedWeb of Science®Google Scholar Altomare, C., Cellamare, S., Carotti, A. and Ferappi, M. (1993) Linear solvation energy relationships in reversed-phase liquid chromatography. Examination in deltabond C8 as stationary phase for measuring lipophilicity parameters. Quant. Struct. -Act. Relat., 12, 261– 268. Wiley Online LibraryCASWeb of Science®Google Scholar Altun, A., Kumru, M. and Dimoglo, A. (2001) The role of conformational and electronic parameters of thiosemicarbazone and thiosemicarbazide derivatives for their dermal toxicity. J. Mol. Struct. (Theochem), 572, 121– 134. CrossrefCASWeb of Science®Google Scholar Alunni, S., Clementi, S., Edlund, U., Johnels, D., Hellberg, S., Sjöström, M. and Wold, S. (1983) Multivariate data analysis of substituent descriptors. Acta Chem. Scand., 37, 47– 53. CrossrefWeb of Science®Google Scholar Alvarez-Ginarte, Y.M., Crespo, R., Montero-Cabrera, L.A., Ruiz-Garcia, J.A., Marrero-Ponce, Y., Santana, R.," @default.
- W4205658701 created "2022-01-26" @default.
- W4205658701 date "2009-07-15" @default.
- W4205658701 modified "2023-10-17" @default.
- W4205658701 title "Bibliography" @default.
- W4205658701 cites W1009610150 @default.
- W4205658701 cites W106168664 @default.
- W4205658701 cites W110840346 @default.
- W4205658701 cites W112518296 @default.
- W4205658701 cites W112873001 @default.
- W4205658701 cites W121410459 @default.
- W4205658701 cites W122375228 @default.
- W4205658701 cites W124164093 @default.
- W4205658701 cites W124513372 @default.
- W4205658701 cites W128789246 @default.
- W4205658701 cites W133976248 @default.
- W4205658701 cites W135460635 @default.
- W4205658701 cites W135701544 @default.
- W4205658701 cites W13635481 @default.
- W4205658701 cites W13740476 @default.
- W4205658701 cites W137858931 @default.
- W4205658701 cites W138407117 @default.
- W4205658701 cites W140931318 @default.
- W4205658701 cites W1419838174 @default.
- W4205658701 cites W142069827 @default.
- W4205658701 cites W1424187759 @default.
- W4205658701 cites W144005736 @default.
- W4205658701 cites W144050542 @default.
- W4205658701 cites W144437525 @default.
- W4205658701 cites W14486559 @default.
- W4205658701 cites W147273853 @default.
- W4205658701 cites W147877238 @default.
- W4205658701 cites W1480654101 @default.
- W4205658701 cites W1480738161 @default.
- W4205658701 cites W1481913971 @default.
- W4205658701 cites W1482890150 @default.
- W4205658701 cites W1483922417 @default.
- W4205658701 cites W1484026039 @default.
- W4205658701 cites W1484336285 @default.
- W4205658701 cites W1484987052 @default.
- W4205658701 cites W1486991165 @default.
- W4205658701 cites W1488483686 @default.
- W4205658701 cites W1488769062 @default.
- W4205658701 cites W1489549753 @default.
- W4205658701 cites W1491051499 @default.
- W4205658701 cites W1491087744 @default.
- W4205658701 cites W1492193533 @default.
- W4205658701 cites W1492391409 @default.
- W4205658701 cites W1492954502 @default.
- W4205658701 cites W1493014877 @default.
- W4205658701 cites W1493735244 @default.
- W4205658701 cites W1494838316 @default.
- W4205658701 cites W1495368973 @default.
- W4205658701 cites W1496188536 @default.
- W4205658701 cites W1496745133 @default.
- W4205658701 cites W1497782867 @default.
- W4205658701 cites W1499370055 @default.
- W4205658701 cites W1499942716 @default.
- W4205658701 cites W1500074678 @default.
- W4205658701 cites W1500138551 @default.
- W4205658701 cites W1501040069 @default.
- W4205658701 cites W1501141819 @default.
- W4205658701 cites W1501145371 @default.
- W4205658701 cites W1501659651 @default.
- W4205658701 cites W1502427467 @default.
- W4205658701 cites W1503266348 @default.
- W4205658701 cites W1503607490 @default.
- W4205658701 cites W1503675511 @default.
- W4205658701 cites W1503809876 @default.
- W4205658701 cites W1504956791 @default.
- W4205658701 cites W1505394602 @default.
- W4205658701 cites W1505543920 @default.
- W4205658701 cites W1506062426 @default.
- W4205658701 cites W1506253796 @default.
- W4205658701 cites W1506801048 @default.
- W4205658701 cites W1506883926 @default.
- W4205658701 cites W1507492716 @default.
- W4205658701 cites W1507581348 @default.
- W4205658701 cites W1507676949 @default.
- W4205658701 cites W1508725880 @default.
- W4205658701 cites W1508909465 @default.
- W4205658701 cites W1509196567 @default.
- W4205658701 cites W1509658738 @default.
- W4205658701 cites W1509739650 @default.
- W4205658701 cites W1510224559 @default.
- W4205658701 cites W1510901231 @default.
- W4205658701 cites W1511183873 @default.
- W4205658701 cites W1511198174 @default.
- W4205658701 cites W1511681576 @default.
- W4205658701 cites W1512563349 @default.
- W4205658701 cites W1513923893 @default.
- W4205658701 cites W1514080456 @default.
- W4205658701 cites W1514237408 @default.
- W4205658701 cites W1515081291 @default.
- W4205658701 cites W1515996833 @default.
- W4205658701 cites W1516061977 @default.
- W4205658701 cites W1516400897 @default.
- W4205658701 cites W1516611563 @default.