Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205658999> ?p ?o ?g. }
- W4205658999 endingPage "140" @default.
- W4205658999 startingPage "1" @default.
- W4205658999 abstract "Face detection, because of its vast array of applications, is one of the most active research areas in computer vision. In this book, we review various approaches to face detection developed in the past decade, with more emphasis on boosting-based learning algorithms. We then present a series of algorithms that are empowered by the statistical view of boosting and the concept of multiple instance learning. We start by describing a boosting learning framework that is capable to handle billions of training examples. It differs from traditional bootstrapping schemes in that no intermediate thresholds need to be set during training, yet the total number of negative examples used for feature selection remains constant and focused (on the poor performing ones). A multiple instance pruning scheme is then adopted to set the intermediate thresholds after boosting learning. This algorithm generates detectors that are both fast and accurate." @default.
- W4205658999 created "2022-01-25" @default.
- W4205658999 creator A5038013079 @default.
- W4205658999 creator A5058849717 @default.
- W4205658999 date "2010-12-20" @default.
- W4205658999 modified "2023-10-16" @default.
- W4205658999 title "Boosting-Based Face Detection and Adaptation" @default.
- W4205658999 cites W1481035327 @default.
- W4205658999 cites W1484243512 @default.
- W4205658999 cites W1489207701 @default.
- W4205658999 cites W1495858184 @default.
- W4205658999 cites W1505090648 @default.
- W4205658999 cites W1527977637 @default.
- W4205658999 cites W1529401398 @default.
- W4205658999 cites W1546961578 @default.
- W4205658999 cites W1548307250 @default.
- W4205658999 cites W1549083695 @default.
- W4205658999 cites W1563088657 @default.
- W4205658999 cites W1568108019 @default.
- W4205658999 cites W1602242398 @default.
- W4205658999 cites W1607535009 @default.
- W4205658999 cites W1654403602 @default.
- W4205658999 cites W1683021108 @default.
- W4205658999 cites W1685166381 @default.
- W4205658999 cites W1740113406 @default.
- W4205658999 cites W1825459403 @default.
- W4205658999 cites W1827091188 @default.
- W4205658999 cites W1869980952 @default.
- W4205658999 cites W1919696353 @default.
- W4205658999 cites W1927929256 @default.
- W4205658999 cites W1931059338 @default.
- W4205658999 cites W1970563743 @default.
- W4205658999 cites W1984525543 @default.
- W4205658999 cites W1987490795 @default.
- W4205658999 cites W1988790447 @default.
- W4205658999 cites W2000466020 @default.
- W4205658999 cites W2006793117 @default.
- W4205658999 cites W2011503867 @default.
- W4205658999 cites W2014915963 @default.
- W4205658999 cites W2024046085 @default.
- W4205658999 cites W2030407699 @default.
- W4205658999 cites W2033419168 @default.
- W4205658999 cites W2035090801 @default.
- W4205658999 cites W2039668773 @default.
- W4205658999 cites W2042045798 @default.
- W4205658999 cites W2046399019 @default.
- W4205658999 cites W2051985940 @default.
- W4205658999 cites W2060451775 @default.
- W4205658999 cites W2062104878 @default.
- W4205658999 cites W2075386676 @default.
- W4205658999 cites W2091377065 @default.
- W4205658999 cites W2096349671 @default.
- W4205658999 cites W2096883237 @default.
- W4205658999 cites W2097455814 @default.
- W4205658999 cites W2097458023 @default.
- W4205658999 cites W2098054142 @default.
- W4205658999 cites W2100152238 @default.
- W4205658999 cites W2103577141 @default.
- W4205658999 cites W2104577112 @default.
- W4205658999 cites W2104804886 @default.
- W4205658999 cites W2107634464 @default.
- W4205658999 cites W2108927102 @default.
- W4205658999 cites W2110119381 @default.
- W4205658999 cites W2111617188 @default.
- W4205658999 cites W2111662190 @default.
- W4205658999 cites W2111868822 @default.
- W4205658999 cites W2113196445 @default.
- W4205658999 cites W2113227937 @default.
- W4205658999 cites W2114863372 @default.
- W4205658999 cites W2117203466 @default.
- W4205658999 cites W2118725351 @default.
- W4205658999 cites W2118847468 @default.
- W4205658999 cites W2120284346 @default.
- W4205658999 cites W2120907774 @default.
- W4205658999 cites W2121486117 @default.
- W4205658999 cites W2121601095 @default.
- W4205658999 cites W2121680631 @default.
- W4205658999 cites W2121871678 @default.
- W4205658999 cites W2122352046 @default.
- W4205658999 cites W2123066336 @default.
- W4205658999 cites W2123602281 @default.
- W4205658999 cites W2123993331 @default.
- W4205658999 cites W2124351082 @default.
- W4205658999 cites W2124426566 @default.
- W4205658999 cites W2127661044 @default.
- W4205658999 cites W2129018774 @default.
- W4205658999 cites W2129035221 @default.
- W4205658999 cites W2130287471 @default.
- W4205658999 cites W2132103241 @default.
- W4205658999 cites W2132920253 @default.
- W4205658999 cites W2133860751 @default.
- W4205658999 cites W2135404154 @default.
- W4205658999 cites W2135478857 @default.
- W4205658999 cites W2137044408 @default.
- W4205658999 cites W2137611207 @default.
- W4205658999 cites W2139479830 @default.
- W4205658999 cites W2140274257 @default.
- W4205658999 cites W2142511364 @default.