Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205659023> ?p ?o ?g. }
- W4205659023 abstract "Abstract Many different equations have been proposed to describe quantitatively one‐dimensional soil water infiltration. The unknown coefficients of these equations characterize soil hydraulic properties and may be estimated from a n record, , of cumulative infiltration measurements using curve fitting techniques. The two‐term infiltration equation, , of Philip has been widely used to describe measured infiltration data. This function enjoys a solid mathematical–physical underpinning and admits a closed‐form solution for the soil sorptivity, S [L T −1/2 ], and multiple, c [−], of the saturated hydraulic conductivity, K s [L T −1 ]. However, Philip's two‐term equation has a limited time validity, t valid [T], and thus cumulative infiltration data, , beyond will corrupt the estimates of S and K s . This paper introduces a novel method for estimating S , c , K s , and t valid of Philip's two‐term infiltration equation. This method, coined parasite inversion, use as vehicle Parlange's three‐parameter infiltration equation. As prerequisite to our method, we present as secondary contribution an exact, robust and efficient numerical solution of Parlange's infiltration equation. This solution admits Bayesian parameter estimation with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm and yields as byproduct the marginal distribution of Parlange's β parameter. We evaluate our method for 12 USDA soil types using synthetic infiltration data simulated with HYDRUS‐1D. An excellent match is observed between the inferred values of S and K s and their “true” values known beforehand. Furthermore, our estimates of c and t valid correlate well with soil texture, corroborate linearity of the relationship for , and fall within reported ranges. A cumulative vertical infiltration of about 2.5 cm may serve as guideline for the time‐validity of Philip's two‐term infiltration equation." @default.
- W4205659023 created "2022-01-26" @default.
- W4205659023 creator A5006093885 @default.
- W4205659023 creator A5025871169 @default.
- W4205659023 creator A5028331853 @default.
- W4205659023 creator A5044932970 @default.
- W4205659023 creator A5066599616 @default.
- W4205659023 creator A5087730004 @default.
- W4205659023 creator A5088502900 @default.
- W4205659023 date "2022-01-01" @default.
- W4205659023 modified "2023-10-04" @default.
- W4205659023 title "Parasite inversion for determining the coefficients and time‐validity of Philip's two‐term infiltration equation" @default.
- W4205659023 cites W1645947060 @default.
- W4205659023 cites W1721333233 @default.
- W4205659023 cites W1954090063 @default.
- W4205659023 cites W1969245681 @default.
- W4205659023 cites W1976238214 @default.
- W4205659023 cites W1981842833 @default.
- W4205659023 cites W1986300952 @default.
- W4205659023 cites W1986461816 @default.
- W4205659023 cites W1990236303 @default.
- W4205659023 cites W1998272998 @default.
- W4205659023 cites W2001641947 @default.
- W4205659023 cites W2005348293 @default.
- W4205659023 cites W2006723654 @default.
- W4205659023 cites W2009145795 @default.
- W4205659023 cites W2010775708 @default.
- W4205659023 cites W2017764575 @default.
- W4205659023 cites W2020739147 @default.
- W4205659023 cites W2034772691 @default.
- W4205659023 cites W2036630065 @default.
- W4205659023 cites W2038694860 @default.
- W4205659023 cites W2041103369 @default.
- W4205659023 cites W2043671813 @default.
- W4205659023 cites W2045961673 @default.
- W4205659023 cites W2046177454 @default.
- W4205659023 cites W2046335792 @default.
- W4205659023 cites W2048568378 @default.
- W4205659023 cites W2053086830 @default.
- W4205659023 cites W2068790770 @default.
- W4205659023 cites W2069018893 @default.
- W4205659023 cites W2070473590 @default.
- W4205659023 cites W2074308086 @default.
- W4205659023 cites W2077038928 @default.
- W4205659023 cites W2084606291 @default.
- W4205659023 cites W2088235475 @default.
- W4205659023 cites W2109302649 @default.
- W4205659023 cites W2116171074 @default.
- W4205659023 cites W2119008480 @default.
- W4205659023 cites W2119179880 @default.
- W4205659023 cites W2134250036 @default.
- W4205659023 cites W2146495904 @default.
- W4205659023 cites W2154474992 @default.
- W4205659023 cites W2155486049 @default.
- W4205659023 cites W2157042329 @default.
- W4205659023 cites W2162604832 @default.
- W4205659023 cites W2168240859 @default.
- W4205659023 cites W2173126837 @default.
- W4205659023 cites W2213986762 @default.
- W4205659023 cites W2466913836 @default.
- W4205659023 cites W2587274888 @default.
- W4205659023 cites W2606420727 @default.
- W4205659023 cites W2729225806 @default.
- W4205659023 cites W2792219229 @default.
- W4205659023 cites W2817096911 @default.
- W4205659023 cites W2889143539 @default.
- W4205659023 cites W2912808000 @default.
- W4205659023 cites W2945691680 @default.
- W4205659023 cites W2997699993 @default.
- W4205659023 cites W3084862311 @default.
- W4205659023 cites W3102838216 @default.
- W4205659023 cites W4231239802 @default.
- W4205659023 cites W4249731213 @default.
- W4205659023 doi "https://doi.org/10.1002/vzj2.20166" @default.
- W4205659023 hasPublicationYear "2022" @default.
- W4205659023 type Work @default.
- W4205659023 citedByCount "5" @default.
- W4205659023 countsByYear W42056590232022 @default.
- W4205659023 countsByYear W42056590232023 @default.
- W4205659023 crossrefType "journal-article" @default.
- W4205659023 hasAuthorship W4205659023A5006093885 @default.
- W4205659023 hasAuthorship W4205659023A5025871169 @default.
- W4205659023 hasAuthorship W4205659023A5028331853 @default.
- W4205659023 hasAuthorship W4205659023A5044932970 @default.
- W4205659023 hasAuthorship W4205659023A5066599616 @default.
- W4205659023 hasAuthorship W4205659023A5087730004 @default.
- W4205659023 hasAuthorship W4205659023A5088502900 @default.
- W4205659023 hasBestOaLocation W42056590231 @default.
- W4205659023 hasConcept C103272765 @default.
- W4205659023 hasConcept C105795698 @default.
- W4205659023 hasConcept C121332964 @default.
- W4205659023 hasConcept C127313418 @default.
- W4205659023 hasConcept C134306372 @default.
- W4205659023 hasConcept C153400128 @default.
- W4205659023 hasConcept C159390177 @default.
- W4205659023 hasConcept C159750122 @default.
- W4205659023 hasConcept C187320778 @default.
- W4205659023 hasConcept C2777364628 @default.
- W4205659023 hasConcept C28826006 @default.
- W4205659023 hasConcept C33923547 @default.