Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205688568> ?p ?o ?g. }
- W4205688568 endingPage "459" @default.
- W4205688568 startingPage "433" @default.
- W4205688568 abstract "Free Access References Dr. Reiner Westermeier, Dr. Reiner Westermeier GE Healthcare Life Sciences, Oskar-Schlemmer-Str. 11, 80807 München, GermanySearch for more papers by this authorDr. Tom Naven, Dr. Tom Naven GE Healthcare UK Limited, Pollards Wood, Nightingales Lane, Chalfont St Giles, Bucks HP8 4SP, United KingdomSearch for more papers by this authorHans-Rudolf Höpker, Hans-Rudolf Höpker Weberweg 6, 79183 Waldkirch, GermanySearch for more papers by this author Book Author(s):Dr. Reiner Westermeier, Dr. Reiner Westermeier GE Healthcare Life Sciences, Oskar-Schlemmer-Str. 11, 80807 München, GermanySearch for more papers by this authorDr. Tom Naven, Dr. Tom Naven GE Healthcare UK Limited, Pollards Wood, Nightingales Lane, Chalfont St Giles, Bucks HP8 4SP, United KingdomSearch for more papers by this authorHans-Rudolf Höpker, Hans-Rudolf Höpker Weberweg 6, 79183 Waldkirch, GermanySearch for more papers by this author First published: 26 March 2008 https://doi.org/10.1002/9783527622290.refs AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat References Aebersold R, Hood LE, Watts JD. Equipping Scientists for the New Biology. Nature BioTech 18 (2000) 359. CrossrefCASPubMedWeb of Science®Google Scholar Alban A, David S, Björkesten L, Andersson C, Sloge E, Lewis S, Currie I. A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3 (2003) 36– 44. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Altland K. IPGMAKER: A program for IBM-compatible personal computers to create and test recipes for immobilized pH gradients. Electrophoresis 11 (1990) 140– 147. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Anderson BL, Berry RW, Telser A. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis system that separates peptides and proteins in the molecular weight range of 2,500 to 90,000. Anal Biochem 132 (1983) 365– 275. CrossrefCASPubMedWeb of Science®Google Scholar Anderson L, Anderson NG. High resolution two-dimensional electrophoresis of human plasma proteins. Proc Nat Acad Sci USA 74 (1977) 5421– 5425. CrossrefCASPubMedWeb of Science®Google Scholar Anderson NG, Anderson NL. Analytical techniques for cell fractions XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing. Anal Biochem 85 (1978) 331– 340. CrossrefCASPubMedWeb of Science®Google Scholar Anderson NG, Anderson NL. Analytical techniques for cell fractions XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab electrophoresis. Anal Biochem 85 (1978) 341– 354. CrossrefCASPubMedWeb of Science®Google Scholar Anderson NG, Anderson NL, Tollaksen SL. Proteins of human urine. I. Concentration and analysis by two-dimensional electrophoresis. Clin Chem 25 (1979) 1199– 1210. CASPubMedWeb of Science®Google Scholar Anderson NG, Anderson NL. The human protein index. Clin Chem 28 (1982) 739– 748, 1210. CrossrefCASPubMedWeb of Science®Google Scholar Anderson L, Seilhamer J. A Comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18 (1997) 533– 537. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts and new words. Electrophoresis 19 (1998) 1853– 1861. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Anderson NL, Anderson NG. The human plasma proteome. History, character, and diagnostic prospects. Mol Cell Proteomics 1 (2002) 845– 867. CrossrefCASPubMedWeb of Science®Google Scholar Anderson NL, Esquer-Blasco R, Hofmann J-P, Anderson NG. A two-dimensional gel database of rat liver proteins useful in gene regulation and drug effect studies. Electrophoresis 12 (1991) 907– 930. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Anderson UN, Colburn AW, Makarov AA, Raptakis EN, Reynolds DJ, Derrick PJ, Davis SC, Hoffman AD, Thomson S. In-series combination of a magnetic-sector mass spectrometer with a time-of-flight quadratic-field ion mirror. Rev Sci Instrum 69 (1998) 1650– 1660. CrossrefWeb of Science®Google Scholar Annan RS, Huddleston MJ, Verna R, Deshaies RJ, Carr SA; A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal Chem 73 (2001) 393– 404. CrossrefCASPubMedWeb of Science®Google Scholar Apffel A. Multidimensional chromatography of intact proteins. In Simpson RJ, Ed. Purifying proteins for proteomics: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (2003) pp. 75– 100. Google Scholar Arnold U, Ulbrich-Hofmann R. Quantitative protein precipitation from guani-dine hydrochloride-containing solutions by sodium deoxycholate/trichloroacetic acid. Anal Biochem 271 (1999) 197– 199. CrossrefCASPubMedWeb of Science®Google Scholar Axelsson J, Boren M, Naven TJP, Fenyö D. Stringency in database searches for protein identification: determining the level of mass error at which search results are incorrect. Proceedings of the 49th ASMS conference on mass spec-trometry and allied topics, Chicago (2001). Google Scholar Baldwin MA, Medzihradszky KF, Lock CM, Fisher B, Settineri TA, Burlingame AL. Matrix-assisted laser desorption/ionisation coupled with quadrupole/orthogonal acceleration time-of-flight mass spectrometry for protein discovery, identification and structural analysis. Anal Chem 73 (2001) 1707– 1720. CrossrefCASPubMedWeb of Science®Google Scholar Banks R. Dunn MJ, Forbes MA, Stanly A, Pappin DJ, Naven T, Gough M, Harnden P, Selby PJ. The potential use of laser capture microdissection to selctively obtain distinct populations of cells for proteomic analysis. – preliminary findings. Electrophoresis 20 (1999) 689– 700. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Barber M, Bordoli RS, Sedgwick RD, Tyler AN. Fast atom bombardment of solids as an ion source in mass spectrometry. Nature 293 (1981) 270– 271. CrossrefCASWeb of Science®Google Scholar Barrett T, Gould HJ. Tissue and species specifity on non-histone chromatin proteins. Biochim Biophys Acta 294 (1973) 165– 170. CrossrefCASGoogle Scholar Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101 (2004) 12130– 12135. CrossrefCASPubMedWeb of Science®Google Scholar Beavis, RC, Chait BT. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins; Rapid Commun Mass Spectrom 3 (1989) 432– 435. Wiley Online LibraryCASPubMedGoogle Scholar Beavis RC, Chaudhary T, Chait BT; α-cyano-4-hydroxycinnamic acid as a matrix for matrix assisted laser desorption mass spectrometry. Org Mass Spectrom 27 (1992) 156– 158. Wiley Online LibraryCASWeb of Science®Google Scholar Bell AW, Ward MA, Blackstock WP, Freeman HNM, Choudhary JS, Lewis AP, Chotai D, Fazel A, Gushue JN, Paiement J. Proteomics characterisation of abundant Golgi membrane proteins. J Biol. Chem 276 (2001) 5152– 5165. CrossrefCASPubMedWeb of Science®Google Scholar Berggren KN, Schulenberg B, Lopez MF, Steinberg TH, Bogdanova A, Smejkal G, Wang A, Patton WF. An improved formulation of SYPRO Ruby protein gel stain: Comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics 2 (2002) 486– 498. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Bienvenut WV, Sanchez JC, Karmime A, Rouge V, Rose K, Binz PA, Hochstrasser DF. Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot. Anal Chem 71 (1999) 4800– 4807. CrossrefCASPubMedWeb of Science®Google Scholar Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermeier R, Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology, and some applications. J Biochem Biophys Methods 6 (1982) 317– 339. Google Scholar Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez J-C, Frutiger S, Hochstrasser D. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14 (1993) 1023– 1031. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Bjellqvist B, Sanchez J-C, Pasquali C, Ravier F, Paquet N, Frutiger S, Hughes GJ, Hochstrasser D. Micropreparative two-dimensional electrophoresis allowing the separations of samples containing milligram amounts of proteins. Electrophoresis 14 (1993) 1375– 1378. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Bjellqvist B, Basse B, Olsen E, Celis JE. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15 (1994) 529– 539. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22 (2004) 1139– 1145. CrossrefCASPubMedWeb of Science®Google Scholar Blomberg A, Blomberg L, Norbeck J, Fey SJ, Larsen PM, Roepstorff P, Degand H, Boutry M, Posch A, Görg A. Interlaboratory reproducibility of yeast protein patterns analized by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 16 (1995) 1935– 1945. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nature Methods 4 (2007) 231– 237. CrossrefCASPubMedWeb of Science®Google Scholar Bodnar WM, Blackburn RK, Krise JM, Moseley MA. Exploiting the complementary nature of LC/MALDI/MS/MS and LC/ESI/MS/MS for increased proteome coverage. J Am Soc Mass Spectrom 14 (2003) 971– 979. CrossrefCASPubMedWeb of Science®Google Scholar Boutry M, Posch A, Görg A. Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 16 (1995) 1935– 1945. Wiley Online LibraryPubMedWeb of Science®Google Scholar Boyle JG and Whitehouse CM. Time-of-flight mass spectrometry with an electro-spray ion beam. Anal Chem 64 (1992) 2084– 2089. CrossrefCASPubMedWeb of Science®Google Scholar Brancia FL, Oliver SG, Gaskell SJ. Improved matrix-assisted laser desorption mass spectrometric analysis of tryptic hydrolysates of proteins following guanidation of lysine-containing peptides. Rapid Commun Mass Spectrom 14 (2000) 2070– 2073. Wiley Online LibraryCASPubMedGoogle Scholar Breuker K, Oh H, Horn DM, Cerda B, McLafferty, FW. Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J Am Chem Soc 124 (2002) 6407– 6420. CrossrefCASPubMedWeb of Science®Google Scholar Brookes PS, Pinner A, Ramachandran A, Coward L, Barnes S, Kim H, DarleyUsmar VM. High throughput two-dimensional blue-native electrophoresis: A tool for functional proteomics of mitochondria and signaling complexes. Proteomics 2 (2002) 969– 977. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Brown RS and Lennon JJ. Mass resolution improvement by incorporation of pulsed ion extraction/ionisation linear time-of-flight mass spectrometry. Anal Chem 67 (1995) 1998– 2003. CrossrefCASPubMedWeb of Science®Google Scholar Burlingame AL, Carr SA, Eds, Mass spectrometry in biological sciences. Humana press, Totowa, New Jersey (1996). CrossrefGoogle Scholar Burgess R, Arthur TM, Pietz BC. Mapping protein–protein interaction domains using ordered fragment ladder far-western analysis of hexahistidine-tagged fusion proteins. Meth Enzymol. 328 (2000) 141– 157. CrossrefCASPubMedWeb of Science®Google Scholar Burkhard PR, Rodrigo N, May D, Sztajzel R, Sanchez J-C, Hochstrasser DF, Shiffer E, Reverdin A, Lacroix JS. Assessing cerebrospinal fluid rhinorrhea: A two-dimensional electrophoresis approach. Electrophoresis 22 (2001) 1826– 1833. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Buxbaum E. Cationic electrophoresis and electrotransfer of membrane glycoproteins. Anal Biochem 314 (2003) 70– 76. CrossrefCASPubMedWeb of Science®Google Scholar Camacho-Carvajal MM, Wollscheid B, Aebersold R, Steimle V, and Schamel WWA. Two-dimensional blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: A proteomics approach. Mol Cell Proteomics 3 (2004) 176– 182. CrossrefCASPubMedWeb of Science®Google Scholar Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. Blue Silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25 (2004) 1327– 1333. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Cargile BJ, Talley DL, Stephenson Jr JL. Immobilized pH gradients as a first dimension in shotgun proteomics and analysis of the accuracy of pI predictability of peptides. Electrophoresis 25 (2004) 936– 945. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B. Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5 (2005) 2497– 2507. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Carr SA, Huddleston MJ, Annan RS. Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem 239 (1996) 180– 192. CrossrefCASPubMedWeb of Science®Google Scholar Carr CD, Moritz RL. Role of reversed-phase high-performance liquid chromatography in protein isolation and purification. In Simpson RJ, Ed. Purifying proteins for proteomics: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (2003) pp 179– 208. Google Scholar Celentano F, Gianazza E, Dossi G, Righetti PG. Buffer systems and pH gradient simulation. Chemometr Intel Lab Systems 1 (1987) 349– 358. CrossrefCASWeb of Science®Google Scholar Chamrad D, Meyer HE. Valid data from large-scale proteomics studies. Nat Methods 2 (2005) 647– 648. CrossrefCASPubMedWeb of Science®Google Scholar Chang EJ, Archambault V, McLachlin D., Krutchinsky AN, Chait, BT. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry. Anal Chem 76 (2004) 4472– 4483. CrossrefCASPubMedWeb of Science®Google Scholar Chaurand P, Luetzenkirchen F, Spengler B. Peptide and protein identification by matrix assisted laser desorption and MALDI post-source decay time-of-flight mass spectrometry. J Am Soc Mass Spectrom 10 (1999) 91– 103. CrossrefCASPubMedWeb of Science®Google Scholar Chen HS, Rejtar T, Andreev V, Moskovets E, Karger BL. High speed, high resolution monolithic LC-MALDI MS using an off-line continuous deposition interface for proteome analysis. Anal Chem 77 (2005) 2323– 2331. CrossrefCASPubMedWeb of Science®Google Scholar Chevallet C, Santoni V,. Poinas A, Rouquie D, Fuchs A, Kieffer S, Rossignol M, Lunardi J, Gerin J, Rabilloud T. New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19 (1998) 1901– 1909. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Chromy BA, Gonzales AD, Perkins J, Choi MW, Corzett MH, Chang BC, Corzett CH, McCutchen-Maloney SL. Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins. J Proteome Res 3 (2004) 1120– 1127. CrossrefCASPubMedWeb of Science®Google Scholar Clauser KR, Baker P, Burlingame AL. Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71 (1999) 2871– 2882. CrossrefCASPubMedWeb of Science®Google Scholar Cleland WW. Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3 (1964) 480– 482. CrossrefCASPubMedWeb of Science®Google Scholar Coghlan DR, Mackintosh JA, Karuso P. Mechanism of reversible staining of protein with epicocconone. Org Lett 7 (2005) 2401– 2404. CrossrefCASPubMedWeb of Science®Google Scholar Cooper HJ, Håkansson K, Marshall AG. The role of electron capture dissociation in biomolecular analysis. Mass Spectrum. Reviews 24 (2005) 201– 222. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Conrads TP, Issaq HJ & Veenstra TD. New tools for quantitative phosphoproteome analysis. Biochem Biophys Res Commun 290 (2002) 885– 890. CrossrefCASPubMedWeb of Science®Google Scholar Cornish TJ and Cotter RJ. A curved field reflectron time-of-flight mass spectrometer for the simultaneous focusing of metastable ions. Rapid Commun Mass Spectrom 8 (1994) 781– 785. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Cournoyer JJ, Pittman JL, Ivleva VB, Fallows E, Waskell L, Costello CE, O'Connor PB. Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation. Protein Sci. 14 (2005) 452– 463. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Covey TR, Huang EC, Henion JD. Structural characterisation of protein tryptic peptides by liquid chromatography, mass spectrometry and collision induced dissociation of their doubly charged molecular ions. Anal Chem 63 (1991) 1193– 1200. CrossrefCASGoogle Scholar Creasy DM, Cottrell JS. Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2 (2002) 1426– 1434. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Damerval C, DeVienne D, Zivy M, Thiellement H. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling protein. Electrophoresis 7 (1986) 53– 54. Wiley Online LibraryWeb of Science®Google Scholar Delaplace P, van der Wal F, Dierick J-F, Cordewener JHG, Fauconnier M-L, du Jardin P, America AHP. Potato tuber proteomics: comparison of two complementary extraction methods designed for 2-DE of acidic proteins. Proteomics 6 (2006) 6494– 6497. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Devreese B, Vanrobaeys F, Smet J, Van Beeumen J, Van Coster R. Mass spectro-metric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel elctrophoresis. Electrophoresis 23 (2002) 2525– 2533. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Dixon SP, Pitfield ID, Perrett D. Comprehensive multi-dimensional liquid chromatographic separation in biomedical and pharmaceutical analysis: a review. Biomed Chromatogr 207 (2006) 508 – 529. Wiley Online LibraryCASWeb of Science®Google Scholar Donoghue PM, McManus CA, O'Donoghue NM, Pennington SR, Dunn MJ. CyDye Immunoblotting for Proteomics: Co-detection of specific immunoreactive and total protein profiles. Proteomics 6 (2006) 6400– 6404. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Dreger M. Subcellular proteomics. Mass Spec Rev 22 (2003) 27– 56. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Dubrovska A, Souchelnytskyi S. Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics 5 (2005) 4678– 4683. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Dunbar BS. Two-dimensional electrophoresis and immunological techniques. Plenum Press, New York (1987). CrossrefGoogle Scholar Dunn MJ, Burghes AHM. High-resolution two-dimensional polyacrylamide gel electrophoresis. I. Methodological procedures. Electrophoresis 4 (1983a) 97– 116. Wiley Online LibraryCASWeb of Science®Google Scholar Dunn MJ, Burghes AHM. High-resolution two-dimensional polyacrylamide gel electrophoresis. II. Analysis and applications. Electrophoresis 4 (1983b) 173– 189. Wiley Online LibraryCASWeb of Science®Google Scholar Dunn MJ. Gel electrophoresis of proteins. Bios Scientific Publishers Alden Press, Oxford (1993). Google Scholar Dunn MJ. Detection of total proteins on western blots of 2-D polyacrylamide gels. In. Link AJ. Ed. 2-D Proteome Analysis Protocols. Methods in Molecular Biology 112. Humana Press, Totowa, NJ(1999) 319– 329. Google Scholar Dunn MJ, Ed. From genome to proteome. Advances in the practice and application of proteomics. WILEY-VCH, Weinheim (1999). Wiley Online LibraryGoogle Scholar Elias JE, Haas W, Faherty BK, Gygi SP. Comparative evaluation of mass spec-trometry platforms used in large-scale proteomics investigations. Nat Methods 2 (2005) 667– 675. CrossrefCASPubMedWeb of Science®Google Scholar Emmett MR and Caprioli RM. Micro-electrospray mass spectrometery: ultra high sensitivity analysis of peptides and proteins. J Am Soc Mass Spectrom 5 (1994) 605– 613. CrossrefCASPubMedWeb of Science®Google Scholar Eng JK, McCormack AL, Yates JR III. An approach to correlate tandem mass spectra data of peptides with amino acid sequences in protein databases. J Am Soc Mass Spectrom 5 (1994) 976– 989. CrossrefCASPubMedWeb of Science®Google Scholar Eriksson J, Fenyo D. Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Nature Biotech 25 (2007) 651– 655. CrossrefCASPubMedWeb of Science®Google Scholar Essader AS, Cargile BJ, Bundy JL, Stephenson JL. A comparison of immobilized pH gradient isoelectric focusing and strong-cation-exchange chromatography as a first dimension in shotgun proteomics. Proteomics 5 (2005) 24– 34. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Eubel H, Jänsch L Braun H. New insights into the respiratory chain of plant mitochondria: supercomplexes and a unique composition of complex II. Plant Physiol 133 (2003) 274– 286. CrossrefCASPubMedWeb of Science®Google Scholar Fägerstam LG, Frostell-Karlsson Å, Karlsson R, Persson, B, Rönnberg, I. Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic site and concentration analysis. J Anal Chrom 597 (1992) 397– 410. CrossrefCASPubMedWeb of Science®Google Scholar Fenn JB, Mann M, Meng CK, Wong SK, Whitehouse CM. Electrospray ionisation for mass spectrometry of large biomolecules. Science 246 (1989) 64– 71. CrossrefCASPubMedWeb of Science®Google Scholar Fenyö D, Qin J, Chait BT. Protein identification using mass spectrometric information. Electrophoresis 19 (1998) 998– 1005. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Fenyo D, Beavis RC Informatics and data management in proteomics. Trends Biotechnol. 20 (2002) 35– 38. CrossrefPubMedWeb of Science®Google Scholar Fernandez-Patron C, Castellanos-Serra L, Hardy E, Guerra M, Estevez E, Mehl E, Frank RW. Understanding the mechanism of the zinc-ion stains of biomacro-molecules in electrophoresis gels: Generalization of the reverse-staining technique. Electrophoresis 19 (1998) 2398– 2406. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Field S, Song O. A novel genetic system to detect protein–protein interactions. Nature 340 (1989) 245– 246. CrossrefPubMedWeb of Science®Google Scholar Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM.. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechno. 20 (2002) 301– 305. CrossrefCASPubMedWeb of Science®Google Scholar Fountoulakis M, Takacs B, Langen H. Two-dimensional map of basic proteins of Haemophilus influenza. Electrophoresis 19 (1998) 761– 766. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4 (2004) 793– 811. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Friedman DB, Stauff DL, Pishchany G, Whitwell CW, Torres VJ, Skaar EP. Staphylococcus aureus redirects central metabolism to increase iron availability. PLoS Pathog 2 (2006): e87. DOI: 10.1371/journal.ppat.0020087 CrossrefPubMedWeb of Science®Google Scholar Friedman DB, Wang SE, Whitwell CW, Caprioli RM, Arteaga CL. Multivariable difference gel electrophoresis and mass spectrometry. A case study on transforming growth factor- and ErbB2 signaling. Mol Cell Proteomics 6 (2007) 150– 169. CrossrefCASPubMedWeb of Science®Google Scholar Gabius HJ, Andre S, Kaltner H, Siebert HC. The sugar code: functional lectinomics. Biochim Biophys Acta 1572 (2002) 165– 177. CrossrefCASPubMedWeb of Science®Google Scholar Garavelli JS. The RESID database of protein modifications as a resource and annotation tool. Proteomics 4 (204) 1527– 1533. Google Scholar Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. Functional organisation of the yeast proteome by systematic analysis of protein complexes. Nature 415 (2002) 141– 147. CrossrefCASPubMedWeb of Science®Google Scholar GE Healthcare Handbook: “ Affinity Chromatography, Principles and Methods” (2002) 18-1022-29. Google Scholar GE Healthcare Handbook: “Fluorescence imaging: Principles and Methods” (2002) 63-0035-28. Google Scholar GE Healthcare User Manual: “ Ettan Spot Picker Nonbacked Gel Kit” (2003) 11-0002-69. Google Scholar GE Healthcare “Protein Separations’ Handbook Collection” (2004). Google Scholar GE Healthcare Handbook: “2-D Electrophoresis. Principles and Methods” (2005). 80-6429-60. Google Scholar GE Healthcare Application Note: “ Comparison of methods for two-dimensional liquid chromatography of peptides using Ettan microLC System.” (2003) 18-1170-93. Google Scholar GE Healthcare Application Note: “Selective labeling of cell-surface proteins using CyDye DIGE Fluor minimal dyes” (2005) 11-0033-92. Google Scholar GE Healthcare Handbook. “Hydrophobic Interaction and Reversed Phase Chromatography. Principles and Methods” (2006) 11-0012-69. Google Scholar Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100 (2003) 6940– 6945. CrossrefCASPubMedWeb of Science®Google Scholar Gevaert K, De Mol H, Sklyarova T, Houthaeye T, Vandekerckhove J. A peptide concentration and purification method for protein characterisation in the subpicomole range using matrix assisted laser desorption/ionisation-postsource decay (MALDI-PSD) sequencing. Electrophoresis 19 (1998) 909– 917. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Gevaert K, Eggermont L, Demol H, Vandekerckhove J. A fast and convenient MALDI-MS based proteomic approach; identification of components scaffolded by the actin cytoskeleton of activated human thrombocytes. J Biotechnol 78 (2000) 259– 269. CrossrefCASPubMedWeb of Science®Google Scholar Gevaert K, Demol H, Martens L, Hoorelbeke B, Puype M, Goethals M, Van Damme J, De Boeck S, Vandekerckhove J. Protein identification based on matrix assistedd laser desorption/ionisation-post source decay-mass spectrometry. Electrophoresis 22 (2001) 1645– 1651." @default.
- W4205688568 created "2022-01-25" @default.
- W4205688568 date "2008-03-26" @default.
- W4205688568 modified "2023-09-27" @default.
- W4205688568 title "References" @default.
- W4205688568 cites W110247251 @default.
- W4205688568 cites W1483033065 @default.
- W4205688568 cites W1495926848 @default.
- W4205688568 cites W1497179297 @default.
- W4205688568 cites W1500368251 @default.
- W4205688568 cites W1502702043 @default.
- W4205688568 cites W1519016390 @default.
- W4205688568 cites W1525575010 @default.
- W4205688568 cites W1528145391 @default.
- W4205688568 cites W1546538401 @default.
- W4205688568 cites W1551584577 @default.
- W4205688568 cites W1575714113 @default.
- W4205688568 cites W1577909840 @default.
- W4205688568 cites W1597678601 @default.
- W4205688568 cites W1606423922 @default.
- W4205688568 cites W1822173142 @default.
- W4205688568 cites W1961483687 @default.
- W4205688568 cites W1963714991 @default.
- W4205688568 cites W1963848474 @default.
- W4205688568 cites W1964211866 @default.
- W4205688568 cites W1964313477 @default.
- W4205688568 cites W1964443249 @default.
- W4205688568 cites W1965290366 @default.
- W4205688568 cites W1965383843 @default.
- W4205688568 cites W1965694122 @default.
- W4205688568 cites W1965789165 @default.
- W4205688568 cites W1965789232 @default.
- W4205688568 cites W1966809971 @default.
- W4205688568 cites W1969536203 @default.
- W4205688568 cites W1970333261 @default.
- W4205688568 cites W1970908974 @default.
- W4205688568 cites W1971809107 @default.
- W4205688568 cites W1972388528 @default.
- W4205688568 cites W1972791227 @default.
- W4205688568 cites W1972875046 @default.
- W4205688568 cites W1972934137 @default.
- W4205688568 cites W1973183139 @default.
- W4205688568 cites W1974053310 @default.
- W4205688568 cites W1974373393 @default.
- W4205688568 cites W1974830441 @default.
- W4205688568 cites W1974882346 @default.
- W4205688568 cites W1974933884 @default.
- W4205688568 cites W1974976320 @default.
- W4205688568 cites W1975085160 @default.
- W4205688568 cites W1975301869 @default.
- W4205688568 cites W1975938671 @default.
- W4205688568 cites W1976720964 @default.
- W4205688568 cites W1976861256 @default.
- W4205688568 cites W1977186059 @default.
- W4205688568 cites W1977287804 @default.
- W4205688568 cites W1977950302 @default.
- W4205688568 cites W1978254752 @default.
- W4205688568 cites W1978341966 @default.
- W4205688568 cites W1978368163 @default.
- W4205688568 cites W1978537262 @default.
- W4205688568 cites W197861672 @default.
- W4205688568 cites W1979413843 @default.
- W4205688568 cites W1979786011 @default.
- W4205688568 cites W1979936667 @default.
- W4205688568 cites W1980117405 @default.
- W4205688568 cites W1980804108 @default.
- W4205688568 cites W1981593008 @default.
- W4205688568 cites W1981978551 @default.
- W4205688568 cites W1982468602 @default.
- W4205688568 cites W1983191700 @default.
- W4205688568 cites W1984492870 @default.
- W4205688568 cites W1985490978 @default.
- W4205688568 cites W1985923228 @default.
- W4205688568 cites W1986299132 @default.
- W4205688568 cites W1986775217 @default.
- W4205688568 cites W1987445292 @default.
- W4205688568 cites W1987783978 @default.
- W4205688568 cites W1988287443 @default.
- W4205688568 cites W1988515943 @default.
- W4205688568 cites W1988556197 @default.
- W4205688568 cites W1988587727 @default.
- W4205688568 cites W1988731759 @default.
- W4205688568 cites W1990137485 @default.
- W4205688568 cites W1991787417 @default.
- W4205688568 cites W1991831498 @default.
- W4205688568 cites W1991907845 @default.
- W4205688568 cites W1992345938 @default.
- W4205688568 cites W1992412469 @default.
- W4205688568 cites W1992497040 @default.
- W4205688568 cites W1992930552 @default.
- W4205688568 cites W1993005516 @default.
- W4205688568 cites W1993018008 @default.
- W4205688568 cites W1993305231 @default.
- W4205688568 cites W1993826131 @default.
- W4205688568 cites W1993963293 @default.
- W4205688568 cites W1994088401 @default.
- W4205688568 cites W1994391661 @default.
- W4205688568 cites W1995354807 @default.