Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205692013> ?p ?o ?g. }
- W4205692013 endingPage "161694" @default.
- W4205692013 startingPage "161683" @default.
- W4205692013 abstract "The characterization of aircraft in remote sensing satellite imagery has many armed and civil applications. For civil purposes, such as in tragedy and emergency aircraft searching, airport scrutiny and aircraft identification from satellite images are very important. This study presents an automated methodology based on handcrafted and deep convolutional neural network (DCNN) features. The presented aircraft classification technique consists of the following steps. The handcrafted features achieved from a local binary pattern (LBP) and DCNN are fused by feature fusion techniques. The DCNN features are extracted from Alexnet and Inception V3. Then we adopted a feature selection technique called principal component analysis (PCA). PCA removes the redundant and irrelevant information and improves the classification performance. Then, Famous supervised methodologies categorize these selected features. We chose the best classifier based on its highest accuracy. The proposed technique is executed on the multi-type aircraft remote sensing images (MTARSI) dataset, and the overall highest accuracy that we achieved from our proposed method is 96.8% by the linear support vector machine (SVM) classifier." @default.
- W4205692013 created "2022-01-26" @default.
- W4205692013 creator A5020714271 @default.
- W4205692013 creator A5031593378 @default.
- W4205692013 creator A5040732176 @default.
- W4205692013 creator A5045249230 @default.
- W4205692013 creator A5076851208 @default.
- W4205692013 creator A5091305250 @default.
- W4205692013 date "2021-01-01" @default.
- W4205692013 modified "2023-09-26" @default.
- W4205692013 title "Aircraft Classification Based on PCA and Feature Fusion Techniques in Convolutional Neural Network" @default.
- W4205692013 cites W1536680647 @default.
- W4205692013 cites W1958291604 @default.
- W4205692013 cites W1980038761 @default.
- W4205692013 cites W2048250827 @default.
- W4205692013 cites W2067178723 @default.
- W4205692013 cites W2077319423 @default.
- W4205692013 cites W2108598243 @default.
- W4205692013 cites W2109255472 @default.
- W4205692013 cites W2124386111 @default.
- W4205692013 cites W2151103935 @default.
- W4205692013 cites W2158118830 @default.
- W4205692013 cites W2161969291 @default.
- W4205692013 cites W2162302936 @default.
- W4205692013 cites W2294802479 @default.
- W4205692013 cites W2466055095 @default.
- W4205692013 cites W2626107033 @default.
- W4205692013 cites W2770654566 @default.
- W4205692013 cites W2774245783 @default.
- W4205692013 cites W2778218038 @default.
- W4205692013 cites W2783021904 @default.
- W4205692013 cites W2788202095 @default.
- W4205692013 cites W2789522858 @default.
- W4205692013 cites W2793927960 @default.
- W4205692013 cites W2796417745 @default.
- W4205692013 cites W2890396285 @default.
- W4205692013 cites W2894029650 @default.
- W4205692013 cites W2897160171 @default.
- W4205692013 cites W2897501303 @default.
- W4205692013 cites W2902882516 @default.
- W4205692013 cites W2914263080 @default.
- W4205692013 cites W2919509228 @default.
- W4205692013 cites W2921708311 @default.
- W4205692013 cites W2947507977 @default.
- W4205692013 cites W2949346989 @default.
- W4205692013 cites W2973159718 @default.
- W4205692013 cites W2984243831 @default.
- W4205692013 cites W2995942064 @default.
- W4205692013 cites W2998080974 @default.
- W4205692013 cites W3003180752 @default.
- W4205692013 cites W3100449589 @default.
- W4205692013 cites W3103321707 @default.
- W4205692013 cites W3103856189 @default.
- W4205692013 cites W3142722142 @default.
- W4205692013 doi "https://doi.org/10.1109/access.2021.3132062" @default.
- W4205692013 hasPublicationYear "2021" @default.
- W4205692013 type Work @default.
- W4205692013 citedByCount "4" @default.
- W4205692013 countsByYear W42056920132022 @default.
- W4205692013 countsByYear W42056920132023 @default.
- W4205692013 crossrefType "journal-article" @default.
- W4205692013 hasAuthorship W4205692013A5020714271 @default.
- W4205692013 hasAuthorship W4205692013A5031593378 @default.
- W4205692013 hasAuthorship W4205692013A5040732176 @default.
- W4205692013 hasAuthorship W4205692013A5045249230 @default.
- W4205692013 hasAuthorship W4205692013A5076851208 @default.
- W4205692013 hasAuthorship W4205692013A5091305250 @default.
- W4205692013 hasBestOaLocation W42056920131 @default.
- W4205692013 hasConcept C115961682 @default.
- W4205692013 hasConcept C12267149 @default.
- W4205692013 hasConcept C138885662 @default.
- W4205692013 hasConcept C148483581 @default.
- W4205692013 hasConcept C153180895 @default.
- W4205692013 hasConcept C154945302 @default.
- W4205692013 hasConcept C27438332 @default.
- W4205692013 hasConcept C2776401178 @default.
- W4205692013 hasConcept C41008148 @default.
- W4205692013 hasConcept C41895202 @default.
- W4205692013 hasConcept C50644808 @default.
- W4205692013 hasConcept C52622490 @default.
- W4205692013 hasConcept C53533937 @default.
- W4205692013 hasConcept C66905080 @default.
- W4205692013 hasConcept C81363708 @default.
- W4205692013 hasConcept C87335442 @default.
- W4205692013 hasConcept C95623464 @default.
- W4205692013 hasConceptScore W4205692013C115961682 @default.
- W4205692013 hasConceptScore W4205692013C12267149 @default.
- W4205692013 hasConceptScore W4205692013C138885662 @default.
- W4205692013 hasConceptScore W4205692013C148483581 @default.
- W4205692013 hasConceptScore W4205692013C153180895 @default.
- W4205692013 hasConceptScore W4205692013C154945302 @default.
- W4205692013 hasConceptScore W4205692013C27438332 @default.
- W4205692013 hasConceptScore W4205692013C2776401178 @default.
- W4205692013 hasConceptScore W4205692013C41008148 @default.
- W4205692013 hasConceptScore W4205692013C41895202 @default.
- W4205692013 hasConceptScore W4205692013C50644808 @default.
- W4205692013 hasConceptScore W4205692013C52622490 @default.
- W4205692013 hasConceptScore W4205692013C53533937 @default.