Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205694399> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4205694399 abstract "<sec> <title>UNSTRUCTURED</title> Due to the continued rapid growth in published biomedical literature, it is increasingly difficult to identify and retrieve high-quality evidence. Machine learning approaches have been applied to address this issue. Some models developed using supervised machine learning approaches have achieved high sensitivity or recall, however precision has been variable. In a series of experiments, we will assess the performance of machine learning models to retrieve high-quality, high relevance evidence for clinical consideration from the biomedical literature. The models will be trained using an automated approach applied to a database of almost 100, 000 articles that have been tagged by highly trained research staff based on criteria for high-quality and assessed for clinical relevance by clinicians. We will evaluate and report on the effects of various classifiers, preprocessing steps, feature selection, and the use of balanced vs unbalanced datasets applied during model development on the performance of the derived supervised machine learning models. The series was devised to improve the precision of the retrieval of high-quality articles by applying a machine learning classifier sequentially after using high sensitivity Boolean search filters to an ongoing literature surveillance process. Our multi-level analysis of the various steps of machine learning model development will help expand the existing knowledge base on the effect of each step on the performance of machine learning models. </sec>" @default.
- W4205694399 created "2022-01-25" @default.
- W4205694399 creator A5003516378 @default.
- W4205694399 creator A5010252378 @default.
- W4205694399 creator A5012144838 @default.
- W4205694399 creator A5018454934 @default.
- W4205694399 creator A5018887038 @default.
- W4205694399 creator A5022089970 @default.
- W4205694399 creator A5024942469 @default.
- W4205694399 creator A5044123410 @default.
- W4205694399 creator A5045344606 @default.
- W4205694399 date "2021-04-07" @default.
- W4205694399 modified "2023-09-25" @default.
- W4205694399 title "Auto Machine Learning Approaches to Refine the Identification of High-Quality Clinical Research Articles from The Biomedical Literature: A Study Protocol (Preprint)" @default.
- W4205694399 cites W1533349965 @default.
- W4205694399 cites W1981982281 @default.
- W4205694399 cites W1988453884 @default.
- W4205694399 cites W2019982728 @default.
- W4205694399 cites W2021944660 @default.
- W4205694399 cites W2035792132 @default.
- W4205694399 cites W2063198586 @default.
- W4205694399 cites W2108528416 @default.
- W4205694399 cites W2110097433 @default.
- W4205694399 cites W2131029527 @default.
- W4205694399 cites W2139545264 @default.
- W4205694399 cites W2154703852 @default.
- W4205694399 cites W2313395944 @default.
- W4205694399 cites W2322534411 @default.
- W4205694399 cites W2346750198 @default.
- W4205694399 cites W2519106992 @default.
- W4205694399 cites W2566823011 @default.
- W4205694399 cites W2775479124 @default.
- W4205694399 cites W2801170057 @default.
- W4205694399 cites W2802787326 @default.
- W4205694399 cites W2807522649 @default.
- W4205694399 cites W2810834465 @default.
- W4205694399 cites W2884820193 @default.
- W4205694399 cites W2976332861 @default.
- W4205694399 cites W2994586973 @default.
- W4205694399 cites W3030878622 @default.
- W4205694399 cites W3047250449 @default.
- W4205694399 cites W3106372104 @default.
- W4205694399 cites W4254185686 @default.
- W4205694399 cites W4288083546 @default.
- W4205694399 cites W4313371821 @default.
- W4205694399 doi "https://doi.org/10.2196/preprints.29398" @default.
- W4205694399 hasPublicationYear "2021" @default.
- W4205694399 type Work @default.
- W4205694399 citedByCount "0" @default.
- W4205694399 crossrefType "posted-content" @default.
- W4205694399 hasAuthorship W4205694399A5003516378 @default.
- W4205694399 hasAuthorship W4205694399A5010252378 @default.
- W4205694399 hasAuthorship W4205694399A5012144838 @default.
- W4205694399 hasAuthorship W4205694399A5018454934 @default.
- W4205694399 hasAuthorship W4205694399A5018887038 @default.
- W4205694399 hasAuthorship W4205694399A5022089970 @default.
- W4205694399 hasAuthorship W4205694399A5024942469 @default.
- W4205694399 hasAuthorship W4205694399A5044123410 @default.
- W4205694399 hasAuthorship W4205694399A5045344606 @default.
- W4205694399 hasConcept C119857082 @default.
- W4205694399 hasConcept C124101348 @default.
- W4205694399 hasConcept C136764020 @default.
- W4205694399 hasConcept C148483581 @default.
- W4205694399 hasConcept C154945302 @default.
- W4205694399 hasConcept C158154518 @default.
- W4205694399 hasConcept C17744445 @default.
- W4205694399 hasConcept C199539241 @default.
- W4205694399 hasConcept C34736171 @default.
- W4205694399 hasConcept C41008148 @default.
- W4205694399 hasConcept C43169469 @default.
- W4205694399 hasConcept C81669768 @default.
- W4205694399 hasConceptScore W4205694399C119857082 @default.
- W4205694399 hasConceptScore W4205694399C124101348 @default.
- W4205694399 hasConceptScore W4205694399C136764020 @default.
- W4205694399 hasConceptScore W4205694399C148483581 @default.
- W4205694399 hasConceptScore W4205694399C154945302 @default.
- W4205694399 hasConceptScore W4205694399C158154518 @default.
- W4205694399 hasConceptScore W4205694399C17744445 @default.
- W4205694399 hasConceptScore W4205694399C199539241 @default.
- W4205694399 hasConceptScore W4205694399C34736171 @default.
- W4205694399 hasConceptScore W4205694399C41008148 @default.
- W4205694399 hasConceptScore W4205694399C43169469 @default.
- W4205694399 hasConceptScore W4205694399C81669768 @default.
- W4205694399 hasLocation W42056943991 @default.
- W4205694399 hasOpenAccess W4205694399 @default.
- W4205694399 hasPrimaryLocation W42056943991 @default.
- W4205694399 hasRelatedWork W2973799232 @default.
- W4205694399 hasRelatedWork W3016925281 @default.
- W4205694399 hasRelatedWork W3087493185 @default.
- W4205694399 hasRelatedWork W3174196512 @default.
- W4205694399 hasRelatedWork W3200179079 @default.
- W4205694399 hasRelatedWork W3210877509 @default.
- W4205694399 hasRelatedWork W4212852473 @default.
- W4205694399 hasRelatedWork W4225360065 @default.
- W4205694399 hasRelatedWork W4295514622 @default.
- W4205694399 hasRelatedWork W4366376591 @default.
- W4205694399 isParatext "false" @default.
- W4205694399 isRetracted "false" @default.
- W4205694399 workType "article" @default.