Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205697550> ?p ?o ?g. }
- W4205697550 endingPage "15" @default.
- W4205697550 startingPage "1" @default.
- W4205697550 abstract "Background. Vascular calcification (VC) constitutes subclinical vascular burden and increases cardiovascular mortality. Effective therapeutics for VC remains to be procured. We aimed to use a deep learning-based strategy to screen and uncover plant compounds that potentially can be repurposed for managing VC. Methods. We integrated drugome, interactome, and diseasome information from Comparative Toxicogenomic Database (CTD), DrugBank, PubChem, Gene Ontology (GO), and BioGrid to analyze drug-disease associations. A deep representation learning was done using a high-level description of the local network architecture and features of the entities, followed by learning the global embeddings of nodes derived from a heterogeneous network using the graph neural network architecture and a random forest classifier established for prediction. Predicted results were tested in an in vitro VC model for validity based on the probability scores. Results. We collected 6,790 compounds with available Simplified Molecular-Input Line-Entry System (SMILES) data, 11,958 GO terms, 7,238 diseases, and 25,482 proteins, followed by local embedding vectors using an end-to-end transformer network and a node2vec algorithm and global embedding vectors learned from heterogeneous network via the graph neural network. Our algorithm conferred a good distinction between potential compounds, presenting as higher prediction scores for the compound categories with a higher potential but lower scores for other categories. Probability score-dependent selection revealed that antioxidants such as sulforaphane and daidzein were potentially effective compounds against VC, while catechin had low probability. All three compounds were validated in vitro. Conclusions. Our findings exemplify the utility of deep learning in identifying promising VC-treating plant compounds. Our model can be a quick and comprehensive computational screening tool to assist in the early drug discovery process." @default.
- W4205697550 created "2022-01-26" @default.
- W4205697550 creator A5025625132 @default.
- W4205697550 creator A5048127662 @default.
- W4205697550 creator A5048386356 @default.
- W4205697550 creator A5050661792 @default.
- W4205697550 creator A5052080074 @default.
- W4205697550 date "2022-01-05" @default.
- W4205697550 modified "2023-10-14" @default.
- W4205697550 title "Deep Learning-Assisted Repurposing of Plant Compounds for Treating Vascular Calcification: An In Silico Study with Experimental Validation" @default.
- W4205697550 cites W1487878063 @default.
- W4205697550 cites W1987219048 @default.
- W4205697550 cites W2017424172 @default.
- W4205697550 cites W2018518196 @default.
- W4205697550 cites W2044986027 @default.
- W4205697550 cites W2050078980 @default.
- W4205697550 cites W2061138536 @default.
- W4205697550 cites W2062797058 @default.
- W4205697550 cites W2078720156 @default.
- W4205697550 cites W2091262011 @default.
- W4205697550 cites W2100672820 @default.
- W4205697550 cites W2100811683 @default.
- W4205697550 cites W2113072832 @default.
- W4205697550 cites W2155157373 @default.
- W4205697550 cites W2177870565 @default.
- W4205697550 cites W2201238125 @default.
- W4205697550 cites W2317509591 @default.
- W4205697550 cites W2412446857 @default.
- W4205697550 cites W2579434750 @default.
- W4205697550 cites W2582187633 @default.
- W4205697550 cites W2584378849 @default.
- W4205697550 cites W2615964728 @default.
- W4205697550 cites W2759895657 @default.
- W4205697550 cites W2760403948 @default.
- W4205697550 cites W2769057095 @default.
- W4205697550 cites W2790385355 @default.
- W4205697550 cites W2809156537 @default.
- W4205697550 cites W2811120218 @default.
- W4205697550 cites W2822962393 @default.
- W4205697550 cites W2891259083 @default.
- W4205697550 cites W2904507351 @default.
- W4205697550 cites W2910379869 @default.
- W4205697550 cites W2916047525 @default.
- W4205697550 cites W2918544128 @default.
- W4205697550 cites W2942265404 @default.
- W4205697550 cites W2944882061 @default.
- W4205697550 cites W2945057743 @default.
- W4205697550 cites W2962756421 @default.
- W4205697550 cites W2964029811 @default.
- W4205697550 cites W2965857891 @default.
- W4205697550 cites W2987842868 @default.
- W4205697550 cites W3004337908 @default.
- W4205697550 cites W3010283440 @default.
- W4205697550 cites W3014986943 @default.
- W4205697550 cites W3022638866 @default.
- W4205697550 cites W3031252472 @default.
- W4205697550 cites W3034517410 @default.
- W4205697550 cites W3036931110 @default.
- W4205697550 cites W3048654474 @default.
- W4205697550 cites W3082378435 @default.
- W4205697550 cites W3087290832 @default.
- W4205697550 cites W3102322856 @default.
- W4205697550 cites W3115077728 @default.
- W4205697550 cites W3115563256 @default.
- W4205697550 cites W3130930907 @default.
- W4205697550 cites W3135529627 @default.
- W4205697550 cites W3152552104 @default.
- W4205697550 cites W3153418506 @default.
- W4205697550 cites W3155694762 @default.
- W4205697550 cites W3159411326 @default.
- W4205697550 cites W3159581828 @default.
- W4205697550 cites W3191212074 @default.
- W4205697550 cites W2123327494 @default.
- W4205697550 doi "https://doi.org/10.1155/2022/4378413" @default.
- W4205697550 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35035662" @default.
- W4205697550 hasPublicationYear "2022" @default.
- W4205697550 type Work @default.
- W4205697550 citedByCount "4" @default.
- W4205697550 countsByYear W42056975502022 @default.
- W4205697550 countsByYear W42056975502023 @default.
- W4205697550 crossrefType "journal-article" @default.
- W4205697550 hasAuthorship W4205697550A5025625132 @default.
- W4205697550 hasAuthorship W4205697550A5048127662 @default.
- W4205697550 hasAuthorship W4205697550A5048386356 @default.
- W4205697550 hasAuthorship W4205697550A5050661792 @default.
- W4205697550 hasAuthorship W4205697550A5052080074 @default.
- W4205697550 hasBestOaLocation W42056975501 @default.
- W4205697550 hasConcept C108583219 @default.
- W4205697550 hasConcept C119857082 @default.
- W4205697550 hasConcept C154945302 @default.
- W4205697550 hasConcept C155261790 @default.
- W4205697550 hasConcept C169258074 @default.
- W4205697550 hasConcept C2780035454 @default.
- W4205697550 hasConcept C41008148 @default.
- W4205697550 hasConcept C86803240 @default.
- W4205697550 hasConcept C98274493 @default.
- W4205697550 hasConceptScore W4205697550C108583219 @default.
- W4205697550 hasConceptScore W4205697550C119857082 @default.