Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205698889> ?p ?o ?g. }
- W4205698889 endingPage "367" @default.
- W4205698889 startingPage "367" @default.
- W4205698889 abstract "Ultrasound elastography can quantify stiffness distribution of tissue lesions and complements conventional B-mode ultrasound for breast cancer screening. Recently, the development of computer-aided diagnosis has improved the reliability of the system, whilst the inception of machine learning, such as deep learning, has further extended its power by facilitating automated segmentation and tumour classification. The objective of this review was to summarize application of the machine learning model to ultrasound elastography systems for breast tumour classification. Review databases included PubMed, Web of Science, CINAHL, and EMBASE. Thirteen (n = 13) articles were eligible for review. Shear-wave elastography was investigated in six articles, whereas seven studies focused on strain elastography (5 freehand and 2 Acoustic Radiation Force). Traditional computer vision workflow was common in strain elastography with separated image segmentation, feature extraction, and classifier functions using different algorithm-based methods, neural networks or support vector machines (SVM). Shear-wave elastography often adopts the deep learning model, convolutional neural network (CNN), that integrates functional tasks. All of the reviewed articles achieved sensitivity ³ 80%, while only half of them attained acceptable specificity ³ 95%. Deep learning models did not necessarily perform better than traditional computer vision workflow. Nevertheless, there were inconsistencies and insufficiencies in reporting and calculation, such as the testing dataset, cross-validation, and methods to avoid overfitting. Most of the studies did not report loss or hyperparameters. Future studies may consider using the deep network with an attention layer to locate the targeted object automatically and online training to facilitate efficient re-training for sequential data." @default.
- W4205698889 created "2022-01-25" @default.
- W4205698889 creator A5010270380 @default.
- W4205698889 creator A5029730758 @default.
- W4205698889 creator A5036742312 @default.
- W4205698889 creator A5047913546 @default.
- W4205698889 creator A5061024626 @default.
- W4205698889 creator A5085305634 @default.
- W4205698889 date "2022-01-12" @default.
- W4205698889 modified "2023-10-13" @default.
- W4205698889 title "Breast Tumour Classification Using Ultrasound Elastography with Machine Learning: A Systematic Scoping Review" @default.
- W4205698889 cites W1883441689 @default.
- W4205698889 cites W1971908929 @default.
- W4205698889 cites W1974915238 @default.
- W4205698889 cites W1975135842 @default.
- W4205698889 cites W1975187380 @default.
- W4205698889 cites W1981036181 @default.
- W4205698889 cites W1993947467 @default.
- W4205698889 cites W2016912578 @default.
- W4205698889 cites W2018037207 @default.
- W4205698889 cites W2022898628 @default.
- W4205698889 cites W2029385575 @default.
- W4205698889 cites W2029751258 @default.
- W4205698889 cites W2040032582 @default.
- W4205698889 cites W2048477847 @default.
- W4205698889 cites W2053877457 @default.
- W4205698889 cites W2068161844 @default.
- W4205698889 cites W2088553642 @default.
- W4205698889 cites W2091186770 @default.
- W4205698889 cites W2102729706 @default.
- W4205698889 cites W2109553965 @default.
- W4205698889 cites W2110280396 @default.
- W4205698889 cites W2112753872 @default.
- W4205698889 cites W2117539524 @default.
- W4205698889 cites W2118275358 @default.
- W4205698889 cites W2122647939 @default.
- W4205698889 cites W2130094715 @default.
- W4205698889 cites W2132290789 @default.
- W4205698889 cites W2137324021 @default.
- W4205698889 cites W2141247966 @default.
- W4205698889 cites W2141744828 @default.
- W4205698889 cites W2142628191 @default.
- W4205698889 cites W2150815979 @default.
- W4205698889 cites W2158698691 @default.
- W4205698889 cites W2161349414 @default.
- W4205698889 cites W2165693726 @default.
- W4205698889 cites W2167669297 @default.
- W4205698889 cites W2179143874 @default.
- W4205698889 cites W2244275973 @default.
- W4205698889 cites W2509685700 @default.
- W4205698889 cites W2553972014 @default.
- W4205698889 cites W2613776824 @default.
- W4205698889 cites W2618530766 @default.
- W4205698889 cites W2621333405 @default.
- W4205698889 cites W2738975713 @default.
- W4205698889 cites W2770397194 @default.
- W4205698889 cites W2771169143 @default.
- W4205698889 cites W2773642388 @default.
- W4205698889 cites W2773867184 @default.
- W4205698889 cites W2780186312 @default.
- W4205698889 cites W2805105654 @default.
- W4205698889 cites W2807915975 @default.
- W4205698889 cites W2891378911 @default.
- W4205698889 cites W2896236534 @default.
- W4205698889 cites W2898792177 @default.
- W4205698889 cites W2899543448 @default.
- W4205698889 cites W2903967284 @default.
- W4205698889 cites W2912371425 @default.
- W4205698889 cites W2914836117 @default.
- W4205698889 cites W2936876638 @default.
- W4205698889 cites W2948437230 @default.
- W4205698889 cites W2964317695 @default.
- W4205698889 cites W2972979332 @default.
- W4205698889 cites W2999309192 @default.
- W4205698889 cites W3011175576 @default.
- W4205698889 cites W3012895958 @default.
- W4205698889 cites W3020996329 @default.
- W4205698889 cites W3031989616 @default.
- W4205698889 cites W3033243763 @default.
- W4205698889 cites W3082486338 @default.
- W4205698889 cites W3086499918 @default.
- W4205698889 cites W3111390692 @default.
- W4205698889 cites W3128646645 @default.
- W4205698889 cites W3134553072 @default.
- W4205698889 cites W3177746823 @default.
- W4205698889 cites W3206737537 @default.
- W4205698889 cites W4211032970 @default.
- W4205698889 cites W4250664506 @default.
- W4205698889 doi "https://doi.org/10.3390/cancers14020367" @default.
- W4205698889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35053531" @default.
- W4205698889 hasPublicationYear "2022" @default.
- W4205698889 type Work @default.
- W4205698889 citedByCount "31" @default.
- W4205698889 countsByYear W42056988892022 @default.
- W4205698889 countsByYear W42056988892023 @default.
- W4205698889 crossrefType "journal-article" @default.
- W4205698889 hasAuthorship W4205698889A5010270380 @default.
- W4205698889 hasAuthorship W4205698889A5029730758 @default.