Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205704631> ?p ?o ?g. }
- W4205704631 endingPage "11" @default.
- W4205704631 startingPage "1" @default.
- W4205704631 abstract "The spectral and spatial resolutions of modern optical Earth observation data are continuously increasing. To fully utilize the data, integrate them with other information sources, and create applications relevant to real-world problems, extensive training data are required. We present TAIGA, an open dataset including continuous and categorical forestry data, accompanied by airborne hyperspectral imagery with a pixel size of 0.7 m. The dataset contains over 70 million labeled pixels belonging to more than 600 forest stands. To establish a baseline on TAIGA dataset for multitask learning, we trained and validated a convolutional neural network to simultaneously retrieve 13 forest variables. Due to the size of the imagery, the training and testing sets were independent, with strictly no overlap for patches up to <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$45times 45$ </tex-math></inline-formula> pixels. Our retrieval results show that including both spectral and textural information improves the accuracy of mapping key boreal forest structural characteristics, compared with an earlier study including only spectral information from the same image. TAIGA responds to the increased availability of hyperspectral and very high resolution imagery, and includes the forestry variables relevant for forestry and environmental applications. We propose the dataset as a new benchmark for spatial–spectral methods that overcomes the limitations of widely used small-scale hyperspectral datasets." @default.
- W4205704631 created "2022-01-25" @default.
- W4205704631 creator A5004174834 @default.
- W4205704631 creator A5023700134 @default.
- W4205704631 creator A5036133390 @default.
- W4205704631 creator A5038721631 @default.
- W4205704631 creator A5059597369 @default.
- W4205704631 creator A5078988974 @default.
- W4205704631 date "2022-01-01" @default.
- W4205704631 modified "2023-09-26" @default.
- W4205704631 title "TAIGA: A Novel Dataset for Multitask Learning of Continuous and Categorical Forest Variables From Hyperspectral Imagery" @default.
- W4205704631 cites W1521436688 @default.
- W4205704631 cites W1772504446 @default.
- W4205704631 cites W1965309615 @default.
- W4205704631 cites W1969208324 @default.
- W4205704631 cites W1989354199 @default.
- W4205704631 cites W1992857854 @default.
- W4205704631 cites W2004990382 @default.
- W4205704631 cites W2027134814 @default.
- W4205704631 cites W2046600498 @default.
- W4205704631 cites W2136251662 @default.
- W4205704631 cites W2314785379 @default.
- W4205704631 cites W2345118402 @default.
- W4205704631 cites W2412588858 @default.
- W4205704631 cites W2468286051 @default.
- W4205704631 cites W2482464033 @default.
- W4205704631 cites W2500751094 @default.
- W4205704631 cites W2548599385 @default.
- W4205704631 cites W2572303978 @default.
- W4205704631 cites W2581808969 @default.
- W4205704631 cites W2611655888 @default.
- W4205704631 cites W2616755213 @default.
- W4205704631 cites W2743255627 @default.
- W4205704631 cites W2759257032 @default.
- W4205704631 cites W2767651786 @default.
- W4205704631 cites W2772452219 @default.
- W4205704631 cites W2775447965 @default.
- W4205704631 cites W2782522152 @default.
- W4205704631 cites W2793941577 @default.
- W4205704631 cites W2884158490 @default.
- W4205704631 cites W2891747104 @default.
- W4205704631 cites W2894165434 @default.
- W4205704631 cites W2896058224 @default.
- W4205704631 cites W2901325163 @default.
- W4205704631 cites W2901404426 @default.
- W4205704631 cites W2911554154 @default.
- W4205704631 cites W2947295162 @default.
- W4205704631 cites W2963351448 @default.
- W4205704631 cites W2963366243 @default.
- W4205704631 cites W2967229946 @default.
- W4205704631 cites W2969739369 @default.
- W4205704631 cites W2991616716 @default.
- W4205704631 cites W2999020264 @default.
- W4205704631 cites W3084280717 @default.
- W4205704631 cites W3100011500 @default.
- W4205704631 cites W3102274762 @default.
- W4205704631 cites W3104341624 @default.
- W4205704631 cites W3206083405 @default.
- W4205704631 cites W633320881 @default.
- W4205704631 doi "https://doi.org/10.1109/tgrs.2022.3141217" @default.
- W4205704631 hasPublicationYear "2022" @default.
- W4205704631 type Work @default.
- W4205704631 citedByCount "1" @default.
- W4205704631 countsByYear W42057046312023 @default.
- W4205704631 crossrefType "journal-article" @default.
- W4205704631 hasAuthorship W4205704631A5004174834 @default.
- W4205704631 hasAuthorship W4205704631A5023700134 @default.
- W4205704631 hasAuthorship W4205704631A5036133390 @default.
- W4205704631 hasAuthorship W4205704631A5038721631 @default.
- W4205704631 hasAuthorship W4205704631A5059597369 @default.
- W4205704631 hasAuthorship W4205704631A5078988974 @default.
- W4205704631 hasBestOaLocation W42057046311 @default.
- W4205704631 hasConcept C108583219 @default.
- W4205704631 hasConcept C119857082 @default.
- W4205704631 hasConcept C121332964 @default.
- W4205704631 hasConcept C153180895 @default.
- W4205704631 hasConcept C154945302 @default.
- W4205704631 hasConcept C159078339 @default.
- W4205704631 hasConcept C159620131 @default.
- W4205704631 hasConcept C160633673 @default.
- W4205704631 hasConcept C183852935 @default.
- W4205704631 hasConcept C205649164 @default.
- W4205704631 hasConcept C33390570 @default.
- W4205704631 hasConcept C41008148 @default.
- W4205704631 hasConcept C5274069 @default.
- W4205704631 hasConcept C62520636 @default.
- W4205704631 hasConcept C62649853 @default.
- W4205704631 hasConcept C81363708 @default.
- W4205704631 hasConcept C87621631 @default.
- W4205704631 hasConcept C97137747 @default.
- W4205704631 hasConceptScore W4205704631C108583219 @default.
- W4205704631 hasConceptScore W4205704631C119857082 @default.
- W4205704631 hasConceptScore W4205704631C121332964 @default.
- W4205704631 hasConceptScore W4205704631C153180895 @default.
- W4205704631 hasConceptScore W4205704631C154945302 @default.
- W4205704631 hasConceptScore W4205704631C159078339 @default.
- W4205704631 hasConceptScore W4205704631C159620131 @default.
- W4205704631 hasConceptScore W4205704631C160633673 @default.