Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205760039> ?p ?o ?g. }
- W4205760039 endingPage "367" @default.
- W4205760039 startingPage "353" @default.
- W4205760039 abstract "Free Access References Book Editor(s):Takashi Aida, Takashi Aida Tokyo Institute of Technology Tokyo, JapanSearch for more papers by this authorPeter L. Silveston, Peter L. Silveston University of Waterloo Waterloo, Ontario, CanadaSearch for more papers by this author First published: 28 September 2005 https://doi.org/10.1002/9780470988688.refs AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat References Abdul-Kareem, H. K., Hudgins, R. R. and Silveston, P. L. (1980) Forced cycling of the catalytic oxidation of CO over a V2O5 catalyst II. Temperature cycling. Chem. Eng. Sci.. 35 (10), 2085– 2088. CrossrefCASWeb of Science®Google Scholar Agar, D. W. (1999) Multifunctional reactors: old preconceptions and new dimensions. Chem. Eng. Sci.. 54, 1299– 1305. CrossrefCASWeb of Science®Google Scholar Agar, D. W. (2003) Dos and don'ts of adsorptive reactors. 4th International Conference on Unsteady-State Processes in Catalysis. (USPC4), October 26–29, 2003, Montreal, Canada. Google Scholar Agar, D. W. and Ruppel, W. (1988a) Multifunktionale Reaktoren fur die heterogene Katalyse. Chemie Ing.-Tech.. 43, 731– 741. Wiley Online LibraryWeb of Science®Google Scholar Agar, D. W. and Ruppel, W. (1988b) Extended reactor concept for dynamic De Nox design. Chem. Eng. Sci.. 43 (8), 2073– 2078. CrossrefCASWeb of Science®Google Scholar Agreda, V. H., Partin, L. R. and Heise, W. H. (1990) High-purity methyl acetate via reactive distillation. Chem. Eng. Progr.. 86 (2), 40– 46. CASWeb of Science®Google Scholar Aida, T., Kobayashi, R. and Niiyama, H. (1997) Periodic operation of NO-CO reaction over Pt/Al2O3: effect of intraparticle diffusion. Kagaku Kogaku Ronbunshu (Japanese). 23, 962– 968. CrossrefCASWeb of Science®Google Scholar Aida, T., Na-Ranong, D., Kobayashi, R. and Niiyama, H. (1999) Effect of diffusion and adsorption-desorption on periodic operation performance of NO-CO reaction over supported noble metal catalysts. Chem. Eng. Sci.. 54, 4449– 4457. CrossrefCASWeb of Science®Google Scholar Aida, T., Sekine, T., Na-Ranong, D. and Niiyama, H. (2002) Combined system of catalyst and adsorbent for NO-CO reaction over Pt/Al2O3 under periodic operation. 17th International Symposium on Chemical Reaction Engineering, August 25–28, 2002, Hong Kong, China (Preprint). Google Scholar Akintoye, A., Ganetsos, G. and Barker, P. E. (1990) Preparative scale chromatographic systems as combined biochemical reactor-separators. In Advances in Separation Processes, I. Chem. E. Symp. Ser.. 118, 21– 28. Google Scholar Akintoye, A., Ganetsos, G. and Barker, P. E. (1991) The inversion of sucrose in a semicontinuous countercurrent chromatographic bioreactor-separator. Trans. I. Chem. E. 69C, 35– 44. Google Scholar Al-Juhani, A. A. and Loughlin, K. F. (2003) Simulation of a combined isomerization reactor & pressure swing adsorption unit. Adsorption. 9, 251– 264. CrossrefCASWeb of Science®Google Scholar Alpay, E., Kenney, C. N. and Scott, D. M. (1993) Simulation of rapid pressure swing adsorption and reaction processes. Chem. Eng. Sci.. 48 (18), 3173– 3186. CrossrefCASWeb of Science®Google Scholar Alpay, E., Chatsiriwech, D., Kershenbaum, L. S., Hull, C. P. and Kirkby, N. F. (1994) Combined reaction and separation in pressure swing processes. Chem. Eng. Sci.. 49 (24B), 5845– 5864. CrossrefCASWeb of Science®Google Scholar Alpay, E., Haq, N., Kershenbaum, L. S. and Kirkby, N. F. (1996) Adsorption parameters for strongly adsorbed hydrocarbon vapours on some commercial adsorbents. Gas. Sep. Purif.. 10 (1), 25– 33. CrossrefCASWeb of Science®Google Scholar Altshuller, D. (1983) Design equations and transient behaviour of the countercurrent moving bed chromatographic reactor. Chem. Eng. Commun.. 19, 363– 375. CrossrefCASWeb of Science®Google Scholar Antonucci, F., Giordano, N. and Bart, J. C. J. (1978) Chemical reactions in chromatographic columns. Dehydrogenation of ethane over cadmium-exchanged zeolite 4A. J. Chromatogr.. 150, 309– 317. CrossrefCASWeb of Science®Google Scholar Antos, D. and Seidel-Morgenstern, A. (2001) Application of gradients in the simulated moving bed process. Chem. Eng. Sci.. 56, 6667– 6682. CrossrefCASPubMedWeb of Science®Google Scholar Arsenijevic, Z. L. J., Grbic, B. V., Grbavcic, Z. B., Radic, N. D. and Terlecki-Baricevic, A. V. (1999) Ethylene oxide removal in combined sorbent-catalyst system. Chem. Eng. Sci.. 54, 1519– 1524. CrossrefCASWeb of Science®Google Scholar Bailey, J. E. (1977) Periodic phenomena. In L. Lapidus and N. R. Amundson (eds.), Chemical Reactor Theory. A Review. Prentice-Hall, Engelwood Cliffs, NJ, pp. 758– 813. Google Scholar Bailey, J. E. and Ollis, D. F. (1986) Biochemical Engineering Fundamentals, 2nd edn, McGraw-Hill, New York. Google Scholar Balasubramanian, B., Ortiz, A. Lopez, Kaytakoglu, S. and Harrison, D. P. (1999) Hydrogen from methane in a single-step process. Chem. Eng. Sci.. 54, 3543– 3552. CrossrefCASWeb of Science®Google Scholar Barker, P. E. and Deeble, R. E. (1975) Sequential chromatographic equipment for separation of a wide range of organic mixtures. Chromatogr. Rev.. 8 (2), 67– 79. CrossrefCASWeb of Science®Google Scholar Barker, P. E. and Ching, C. B. (1980) Continuous liquid chromatographic process for separation of fructose-glucose mixtures. Eur. Fed. Chem. Eng. Kemtek. 5 (Copenhagen). Google Scholar Barker, P. E. and Ganetsos, G. (1988) Chemical and biochemical separations using preparative and large scale batch and continuous chromatography. Sep. Purif. Methods. 17 (1), 1– 65. CrossrefCASWeb of Science®Google Scholar Barker, P. E., England, K. and Vlachogiannis, G. (1983) Mathematical model for the fractionation of dextran on a semicontinuous countercurrent simulated moving bed chromatograph. Trans. I. Chem. E. Chem. Eng. Res. Des.. 61, 241– 247. CASWeb of Science®Google Scholar Barker, P. E., Ganetsos, G. and Thawait, S. (1986) Development of a link between batch and semicontinuous liquid chromatographic system. Chem. Eng. Sci.. 41, 2695– 2604. CrossrefWeb of Science®Google Scholar Barker, P. E., Zafar, I. and Alsop, R. M. (1987a) A novel method for the production of dextrans and fructose. In G. W. Moody and P. B. Baker (eds.), Bioreactors and Biotransformations, Elsevier Science Publishers, Amsterdam, pp. 141– 157. Web of Science®Google Scholar Barker, P. E., Zafar, I. and Alsop, R. M. (1987b) Production of dextran and fructose in a chromatographic reactor-separator. In M. S. Verral and M. J. Hudson (eds.), Separations for Biotechnology. Ellis-Horwood, London, Chapter 9, pp. 127– 151. Google Scholar Barker, P. E., Ganetsos, G., Ajongwen, A. and Akintoye, A. (1992a) Bioreaction-separation in continuous chromatographic systems. Chem. Eng. J. Biochem. Eng. J.. 50, B23– B28. CASWeb of Science®Google Scholar Barker, P. E., Ganetsos, G., Ajongwen, A. and Akintoye, A. (1992b) Continuous chromatographic bioreaction-separation. In D. Pyle (ed.), Separations for Biotechnology, Elsevier Science Publishers, London, pp. 549– 557. Web of Science®Google Scholar Barker, P. E., Ajongwen, N. J., Shieh, M. T. and Ganetsos, G. (1992c) Simulated countercurrent chromatographic bioreactor-separators. In Fundamentals of Adsorption, Proceedings of the Fourth International Conference on Fundamental Adsorption, May 17–22, Kyoto, Japan, pp. 35– 44. Google Scholar Bassett, D. W. and Habgood, H. W. (1960) A gas chromatographic study of the catalytic isomerization of cyclopropane. J. Phys. Chem.. 64, 769– 773. CrossrefCASWeb of Science®Google Scholar Beck, J. V. and Arnold, K. J. (1977) Parameter Estimation in Engineering and Science. John Wiley & Sons, New York. Google Scholar Bennett, B. A. F., Cloete, F. L. D. and Streat, M. (1984) A systematic analysis of the performance of a new continuous ion-exchange technique. Ion Exchange Proc. Ind.. 133– 143. Google Scholar Bessling, B., Schembecker, G. and Simmrock, K. H. (1997) Design of procedure with reactive distillation line diagrams. Ind. Eng. Chem. Res.. 36, 3032– 3042. CrossrefCASWeb of Science®Google Scholar Bjorklund, M. C. and Carr, R. W. (1995) The simulated countercurrent moving bed chromatographic reactor: a catalytic and separative reactor. Catal. Today. 25, 159– 168. CrossrefCASWeb of Science®Google Scholar Bjorklund, M. C. and Carr, R. W. (2002) Enhanced methanol yields from the direct partial oxidation of methane in a simulated countercurrent moving bed chromatographic reactor. Ind. Eng. Chem. Res.. 41, 6528– 6536. CrossrefCASWeb of Science®Google Scholar Boreskov, G. K. and Matros, Yu.Sh. (1983) Unsteady-state performance of heterogeneous catalytic reactions. Catal. Rev.-Sci. Eng.. 25 (4), 551– 590. CrossrefCASWeb of Science®Google Scholar Boreskov, G. K., Matros, Yu.Sh., Kiselov, O. V. and Bunimovich, G. A. (1977) Realization of heterogeneous catalytic processes under unsteady-state conditions. Dokl. Acad. Nauk USSR. 237, 160– 163 (in Russian). CASWeb of Science®Google Scholar Boreskov, G. K., Matros, Yu.Sh., Lugovskoy, V. I., Bunimovich, G. A. and Puzhilova, V. I. (1984) Unsteady-state process of complete oxidation in reactor with fixed catalyst bed. Teor. Osn. Khim. Technol.. 18, 328– 334 (in Russian). CASGoogle Scholar Brinkmann, M., Barresi, A. A., Vanni, M. and Baldi, G. (1999) Unsteady state treatment of very lean waste gases in a network of catalytic burners. Catal. Today. 47 (1–4), 263– 277. CrossrefCASWeb of Science®Google Scholar Broughton, D. B. (1961) US Pat. 2 985 589. Google Scholar Broughton, D. B. (1968) Molex: case history of a process. Chem. Eng. Progr.. 64 (8), 60– 65. CASWeb of Science®Google Scholar Broughton, D. B., Neuzil, R. W., Pharis, J. M. and Brearley, C. S. (1970) The Parex process for recovering paraxylene. Chem. Eng. Progr.. 66, 70– 75. CASWeb of Science®Google Scholar Brun-Tsekhovoi, A. R., Zadorin, A. N., Katsobashvili, Ya.R. and Kourdyumov, S. S. (1986) The process of catalytic steam-reforming of hydrocarbons in the presence of carbon dioxide acceptor. In Hydrogen Energy Process VII, Proceedings of the World Hydrogen Energy Conference, Vol. 2, Pergamon Press, New York, pp. 885– 896. Google Scholar Bryson, Jr., A. and Ho, Y. (1975) Applied Optimal Control. Hemisphere Press, Washington, DC. Google Scholar Carta, G. (1991) Simultaneous reaction and chromatography. In C. A. Costa and J.S Cabral (eds), Chromatographic and Membrane Processes in Biotechnology. Kluwer Academic Publishers, the Netherlands, 429– 442. CrossrefGoogle Scholar Carvill, B. T., Hufton, J. R., Anand, M. and Sircar, S. (1996) Sorption-enhanced reaction process. AIChE J.. 42 (10), 2765– 2772. Wiley Online LibraryCASWeb of Science®Google Scholar Champagnie, A. M., Tsotsis, T. T., Minet, R. G. and Webster, I. A. (1990) A high temperature catalytic membrane reactor for ethane dehydrogenation. Chem. Eng. Sci.. 36, 2423– 2429. CrossrefWeb of Science®Google Scholar Chatsiriwech, D., Kershenbaum, L. S. and Kirkby, N. F. (1992) The enhancement of catalytic reactor performance by pressure swing operation. Internal Report, Imperial College, London. Google Scholar Chatsiriwech, D., Alpay, E., Kershenbaum, L. S., Hull, C. P. and Kirkby, N. F. (1994) Enhancement of catalytic reaction by pressure swing adsorption. Catal. Today. 20, 351– 366. CrossrefCASWeb of Science®Google Scholar Cheng, Y. S., Alpay, E. and Kershenbaum, L. S. (1998) Simulation and optimization of a rapid pressure swing reactor. Comput Chem. Eng.. 22, S45– S52. CrossrefCASWeb of Science®Google Scholar Ching, C. B. and Lu, Z. P. (1997) Simulated moving bed reactor: application in bioreaction and separation. Ind. Eng. Chem. Res.. 36, 152– 159. CrossrefCASWeb of Science®Google Scholar Ching, C. B. and Ruthven, D. M. (1988) A liquid phase chromatographic study of sorption and diffusion in NaX and KX zeolite crystals. Zeolites. 8, 68– 73. CrossrefCASWeb of Science®Google Scholar Cho, B. K. (1983) Dynamic behavior of a single catalyst pellet. I. Symmetric concentration cycling during CO oxidation over Pt/Al2O3. Ind. Eng. Chem., Fundam.. 22, 410– 420. CrossrefCASWeb of Science®Google Scholar Cho, B. K. and West, L. A. (1986) Cyclic operation of Pt/Al2O3 catalysts for CO oxidation. Ind. Eng. Chem., Fundam.. 25, 158– 164. CrossrefCASWeb of Science®Google Scholar Cho, B. K., Carr, R. W. and Aris, R. (1980a) A new continuous flow reactor for simultaneous reaction and separation. Sep. Sci. Technol.. 15, 679– 696. CrossrefCASWeb of Science®Google Scholar Cho, B. K., Carr, R. W. and Aris, R. (1980b) A continuous chromatographic reactor. Chem. Eng. Sci.. 35, 74– 81. CrossrefCASPubMedWeb of Science®Google Scholar Cho, B. K., Aris, R. and Carr, R. W. (1982) The mathematical theory of a countercurrent catalytic reactor. Proc. R. Soc. Lond. A. 383, 147– 189. CrossrefCASWeb of Science®Google Scholar Chu, C. and Tsang, L. C. (1971) Behavior of a chromatographic reactor. Ind. Eng. Chem. Process Des. Dev.. 10 (1), 47– 53. CrossrefCASWeb of Science®Google Scholar Cinar, A., Deng, J., Meerkov, S. M. and Shu, X. (1987a) Vibrational control of an exothermic reaction in a CSTR: theory and experiments. AIChE J.. 33, 353– 365. Wiley Online LibraryCASWeb of Science®Google Scholar Cinar, A., Rigopoulos, K., Shu, X. and Meerkov, S. M. (1987b) Vibrational control of chemical reactors: stabilization and conversion improvement in an exothermic CSTR. Chem. Eng. Commun.. 59, 299– 308. CrossrefCASWeb of Science®Google Scholar B. S. Clausen and P. E. H. Nielsen (ed.) (2000) Catalysis in membrane reactors, Catal. Today, 56. Google Scholar Cloete, F. L. D. and Streat, M. (1963) A new continuous solid-fluid contacting technique. Nature. 200 (4912), 1199– 1200. CrossrefCASWeb of Science®Google Scholar Cote, A. S., Delgass, W. N. and Ramkrishna, D. (1999) Investigation of spatially patterned catalytic reactors. Chem. Eng. Sci.. 54, 2627– 2635. CrossrefCASWeb of Science®Google Scholar Croft, D. T. and Levan, M. G. (1994) Periodic states of adsorption cycles 1. Direct determination and stability. Chem. Eng. Sci.. 49 (11), 1821– 1829. CrossrefCASWeb of Science®Google Scholar Cybulski, A. and Moulijn, J. A. (1997) Structured Catalysts and Reactors. Marcel Dekker, New York. Google Scholar Dalmon, J. A. (1997) Catalytic membrane reactors. In Ertl et al. (eds.), Handbook of Heterogeneous Catalysis. VCH, Weihheim, Germany, pp. 1387– 1398. Google Scholar Dautzenberg, F. M. and Mukherjee, M. (2001) Process intensification using multifunctional reactors. Chem. Eng. Sci.. 56, 251– 267. CrossrefCASWeb of Science®Google Scholar de Deugd, R. M., Kapteijn, F. and Moulijn, J. A. (2003) Using monolithic catalysts for highly selective Fischer-Tropsch synthesis. Catal. Today. 79 (1–4), 495– 550. CrossrefCASWeb of Science®Google Scholar de Garmo, J. L., Parulekar, V. N. and Pinjala, V. (1992) Consider reactive distillation. Chem. Eng. Progr.. 3, 43– 50. Google Scholar de Rosset, A. J., Neuzil, R. W. and Korous, D. J. (1976) Liquid column chromatography as a predictive tool for continuous countercurrent adsorptive separation. Ind. Eng. Chem. Proc. Des. Dev.. 15, 261– 266. Google Scholar den Hollander, J. L., Zomerdijk, M., Straathof, A. J. and van der Wielen, L. A. M. (2002) Continuous enzymatic penicillin G hydrolysis in countercurrent water-butyl acetic biphasic systems. Chem. Eng. Sci.. 57, 1591– 1598. CrossrefCASWeb of Science®Google Scholar Ding, Y. and Alpay, E. (2000a) Adsorption-enhanced steam-methane reforming. Chem. Eng. Sci.. 55, 3929– 3940. CrossrefCASWeb of Science®Google Scholar Ding, Y. and Alpay, E. (2000b) Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem. Eng. Sci.. 55, 3461– 3474. CrossrefCASWeb of Science®Google Scholar Dinwiddie, J. A. and Morgan, W. (1961) US Pat. 2 976 132. Google Scholar Dittmeyer, R., Hollein, V., Quicker, P., Emig, G., Hausinger, G. and Schmidt, F. (1999) Factors controlling the performance of catalytic dehydrogenation of ethylbenzene in palladium composite membrane reactors. Chem. Eng. Sci.. 54, 1431– 1439. CrossrefCASWeb of Science®Google Scholar Dixson, A. G. (1985) Thermal resistance models of packed-bed effective heat transfer parameters. AIChE J.. 31 (5), 826– 834. Wiley Online LibraryWeb of Science®Google Scholar Dodds, R., Hudson, P. L., Kershenbaum, L. and Streat, M. (1973) The operation and modeling of a periodic countercurrent solid-liquid reactor. Chem. Eng. Sci.. 28, 1233– 1248. CrossrefCASWeb of Science®Google Scholar Dunnebier, G., Fricke, J. and Klatt, K.-U. (2000) Optimal design and operation of simulated moving bed chromatographic reactors. Ind. Eng. Chem. Res.. 39, 2290– 2304. CrossrefCASWeb of Science®Google Scholar Elsner, M. P., Dittrich, C. and Agar, D. W. (2002a) Adsorptive reactors for enhancing equilibrium gas-phase reactions two case studies. Chem. Eng. Sci.. 57, 1607– 1619. CrossrefCASWeb of Science®Google Scholar Elsner, M. P., Menge, M. and Agar, D. W. (2002b) Assessment of adsorption enhanced reaction exemplified by the Claus process. CAMURE Conference, September 2002, Lausanne, Switzerland, (Preprint). Google Scholar Elsner, M. P., Menge, M., Muller, C. and Agar, D. W. (2003) The Claus process: teaching an old dog new tricks. Catal. Today. 79–80, 487– 494. CrossrefCASWeb of Science®Google Scholar Falle, S. A. E. G., Kallrath, J., Brockmuller, B., Schreieck, A., Giddings, J. R., Agar, D. W. and Watzenberger, O. (1995) The dynamics of reverse flow chromatographic reactors with side stream feed. Chem. Eng. Commun.. 135, 185– 211. CrossrefCASWeb of Science®Google Scholar Falk, T. and Seidel-Morgenstern, A. (1999) Comparison between a fixed-bed reactor and a chromatographic reactor. Chem. Eng. Sci.. 54, 1479– 1485. CrossrefCASWeb of Science®Google Scholar Falk, T. and Seidel-Morgenstern, A. (2002) Analysis of a discontinuously operated chromatographic reactor. Chem. Eng. Sci.. 57, 1599– 1606. CrossrefCASWeb of Science®Google Scholar Fish, B. B. and R. W. Carr (1989) An experimental study of the countercurrent moving-bed chromatographic reactor. Chem. Eng. Sci.. 44 (9), 1773– 1783. CrossrefCASWeb of Science®Google Scholar Fish, B., Carr, R. W. and Aris, R. (1986) The continuous countercurrent moving bed chromatographic reactor. Chem. Eng. Sci.. 41 (4), 661– 668. CrossrefCASWeb of Science®Google Scholar Fish, B. B., Carr, R. W. and Aris, R. (1988) Computer aided experimentation in countercurrent reaction chromatography and simulated countercurrent chromatography. Chem. Eng. Sci.. 43, 1867– 1873. CrossrefCASWeb of Science®Google Scholar Fogler, H. S. (1992) Elements of Chemical Reaction Engineering, 2nd edn. Prentice-Hall, New Jersey. Web of Science®Google Scholar Fox, J. B., Jr., Calhoun, R. C. and Eglinton, W. J. (1969) J. Chromatogr.. 43, 48. CrossrefCASPubMedWeb of Science®Google Scholar Fredeslund, A., Gmehling, J. and Rasmussen, P. (1977) Vapor-Liquid Equilibria using UNIFAC. Elsevier Science Publishers, Amsterdam. Google Scholar Freeman, A., Woodley, J. M. and Lilly, M. D. (1993) In situ product removal as a tool for bioprocessing. Biotechnology. 11, 1007– 1012. CrossrefCASPubMedWeb of Science®Google Scholar Fricke, J. and Schmidt-Traub, H. (2003) A new method supporting the design of simulated moving bed chromatographic reactors. Chem. Eng. Proc.. 42, 237– 248. CrossrefCASWeb of Science®Google Scholar Fricke, J., Meurer, M., Dreisorner, J. and Schmidt-Traub, H. (1999) Effect of process parameters on the performance of a simulated moving bed chromatographic reactor. Chem. Eng. Sci.. 54, 1487– 1492. CrossrefCASWeb of Science®Google Scholar Froment, G. F. and Bischoff, K. B. (1990) Chemical Reactor Analysis and Design, 2nd edn. John Wiley & Sons, New York. Google Scholar Garcia-Bordeje, E., Kapteijn, F. and Moulijn, J. A. (2002) Preparation and characterization of carbon coated monoliths for catalyst support. Carbon. 40 (7), 1079– 1088. CrossrefCASWeb of Science®Google Scholar Gaziev, G. A., Roginskii, S. Z. and Yanovskii, M. I. (1963) USSR Patent 149, 398. Google Scholar Geelen, H. and Wijffels, J. B. (1964) The use of a distillation column as a chemical reactor. In Proceedings of the Third Eur. Symp. Chem. Reac. Eng., Pergamon Press, Oxford, UK, pp. 125– 131. Google Scholar Gelosa, D., Ramaioli, M., Valente, G. and Morbidelli, M. (2003) Chromatographic reactors: esterification of glycerol with acetic acid using acidic polymeric resins. Ind. Eng. Chem. Res.. 42, 6536– 6544. CrossrefCASWeb of Science®Google Scholar Gianetto, A. and Silveston, P. L. (1986) Multiphase Chemical Reactors Theory, Design and Scale Up. Hemisphere Press, Washington, DC. Google Scholar Glueckauf, E. (1955) Theory of chromatography. Part 10 Formulae for diffusion into spheres and their application to chromatography. Trans. Faraday Soc.. 51, 1540– 1551. CrossrefCASWeb of Science®Google Scholar Glueckauf, E. and Kitt, G. P. (1957) Gas chromatographic separation of hydrogen isotopes. In D. H. Desty (ed.), Vapor Phase Chromatography. Butterworths, London, pp. 422– 427. Google Scholar Gomes, V. G. and Fuller, O. M. (1996) Dynamics of propene metathesis: physisorption and diffusion in heterogeneous catalysis. AIChE J.. 42 (1), 204– 213. Wiley Online LibraryCASWeb of Science®Google Scholar Gomes, V. G. and Yee, K. W. K. (2002) A periodic separating reactor for propene metathesis. Chem. Eng. Sci.. 57, 3839– 3850. CrossrefCASWeb of Science®Google Scholar Gore, F. E. (1967) Performance of chromatographic reactors in cyclic operation. Ind. Eng. Chem. Proc. Des. Dev.. 6 (1), 10– 22. CrossrefCASWeb of Science®Google Scholar Gorissen, H. J. (2003) A general approach for the conceptual design of countercurrent reactive separations. Chem. Eng. Sci.. 58, 809– 814. CrossrefCASWeb of Science®Google Scholar Goto, S. and Matsubara, M. (1977) Extraction parametric pumping with reversible reaction. Ind. Eng. Chem. Fundam.. 16, 193– 200. CrossrefCASWeb of Science®Google Scholar Goto, S., Tagawa, T. and Oomiya, T. (1993) Dehydrogenation of cyclohexane in a PSA reactor using hydrogen storage alloy. Kagaku Kogaku Ronbunshu. 19 (6), 978- 983 (in Japanese). CrossrefCASWeb of Science®Google Scholar Goto, S., Tagawa, T. and Ohkawara, H. (1995) Promotion effect of hydrogen storage alloys on the catalytic dehydroaromatization of n-hexane. Sekiyu Gakkaishi. 38 (3), 167- 172 (in Japanese). CrossrefCASWeb of Science®Google Scholar Goto, S., Tagawa, T. and Ohkawara, H. (1996) Promotive effect of hydrogen storage metals on catalytic dehydroaromatization of propane in a PSA type reactor. Sekiyu Gakkaishi. 39 (6), 389- 394 (in Japanese). CrossrefCASGoogle Scholar Graham, W. R. C. and Lynch, D. T. (1990) CO oxidation on Pt: variable phasing of inputs during forced composition cycling. AIChE J.. 36, 1796– 1806. Wiley Online LibraryCASWeb of Science®Google Scholar Han, C. and Harrison, D. P. (1994) Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen. Chem. Eng. Sci.. 49, 5875– 5882. CrossrefCASWeb of Science®Google Scholar Han, C. and Harrison, D. P. (1997) Multicycle performance of a single step process for H2 production. Sep. Sci. Technol.. 32 (1–4), 681– 697. CrossrefCASWeb of Science®Google Scholar Hanika, J., Kolena, J. and Smejkal, Q. (1999) Butylacetate via reactive distillation modeling and experiment. Chem. Eng. Sci.. 54, 5205– 5210. CrossrefCASWeb of Science®Google Scholar Harmsen, G. J. and Chewter, L. A. (1999) Industrial applications of multifunctional, multiphase reactors. Chem. Eng. Sci.. 54, 1541– 1545. CrossrefCASWeb of Science®Google Scholar Harrison, D. P. and Peng, Z.-Y. (2003) Low-carbon monoxide hydrogen by sorption-enhanced reaction. Intern. J. Chem. React. Eng.. 1, A37. Google Scholar Hart, J. and Thomas, W. J. (1991) Gas separation by pulsed pressure swing adsorption. Gas. Sep. Purif.. 5, 125– 133. CrossrefCASGoogle Scholar Hartman, M. and Coughlin, R. (1972) SO2 oxidation in a trickle bed reactor packed with carbon. Chem. Eng. Sci.. 27, 867– 880. CrossrefCASWeb of Science®Google Scholar Hashimoto, K., Adachi, S., Nojima, H. and Ueda, Y. (1983) A new process combining adsorption and enzyme reaction for producing higher-fructose syrup. Biotechnol. Bioeng.. 25, 2371– 2393. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Hattori, T. and Murakami, Y. (1968) Study on the pulse reaction technique I. Theoretical study. J. Catal.. 10, 114– 122. CrossrefCASWeb of Science®Google Scholar Haure, P. M., Hudgins, R. R. and Silveston, P. L. (1989) Periodic operation of a trickle-bed reactor. AIChE J.. 35, 1437– 1444. Wiley Online LibraryCASWeb of Science®Google Scholar Herbsthofer, R. and Bart, H.-J. (2003) Influence of reaction kinetics on the performance of a chromatographic reactor. Chem. Eng. Technol.. 26, 874– 879. Wiley Online LibraryCASWeb of Science®Google Scholar Higler, A. P., Taylor, R. and Krishna, R. (1999) The influence of mass transfer and mixing on the performance of a tray column for reactive distillation. Chem. Eng. Sci.. 54 (13), 2873– 2881. CrossrefCASWeb of Science®Google Scholar Ho, C., Ching, C. B. and Ruthven, D. M. (1987) A comparative study of zeolite and resin adsorbents for the separation of fructose-glucose syrup. Ind. Eng. Chem. Res.. 26, 1407– 1412. CrossrefCASWeb of Science®Google Scholar Hoffmann, U. and Sundmacher, K. (1997) Multifunktionale Reaktoren. Chem.-Ing.-Tech.. 69, 613– 622. Wiley Online LibraryCASWeb of Science®Google Scholar Hufton, J. R., Mayorga, S. and Sircar, S. (1999) Sorption-enhanced reaction process for hydrogen production. AIChE J.. 45 (2), 248– 256. Wiley Online LibraryCASWeb of Science®Google Scholar Hugo, A. J., Jakelski, D. M., Stanitsas, G., Sullivan, G. R., Hudgins, R. R. and Silveston, P. L. (1986) Longterm transients in a reactor under forced concentration cycling. Can. J. Chem. Eng.. 64, 349– 351. Wiley Online LibraryCASWeb of Science®Google Scholar Imai, H., Tagawa, T. and Kuraishi, M. (1985) Acceleration effect of hydrogen storage alloys for the catalytic dehydrogenation of cyclohexane. Mater. Res. Bull.. 20, 511– 516. CrossrefCASWeb of Science®Google Scholar Itoh, N. (1987) A membrane reactor using palladium. AIChE J.. 33, 1576– 1578. Wiley Online LibraryCASWeb of Science®Google Scholar Jain, E., Hudgins, R. R. and Silveston, P. L. (1985) Effectiveness factor under cyclic operation of reactor. Can. J. Chem. Eng.. 63, 165– 169. Wiley Online LibraryWeb of Science®Google Scholar Jaree, A., Budman, H., Hudgins, R. R., Silveston, P. L., Yakhnin, V. and Menzinger, M. (2001) Temperature excursions in packed bed reactors with an axial variation of catalyst activity. Catal. Today. 69, 137– 146. CrossrefCASWeb of Science®Google Scholar Jensen, K. F. (2001) Microreaction engineering Is small better?. Chem. Eng. Sci.. 56, 293– 303. CrossrefCASWeb of Science®Google Scholar Jensen, T. B., Reijns, T. G. P., Billet, H. A. H. and van der Wielen, L. A. M. (2000) Novel simulated moving-bed method for reduced s" @default.
- W4205760039 created "2022-01-25" @default.
- W4205760039 date "2005-09-28" @default.
- W4205760039 modified "2023-10-18" @default.
- W4205760039 title "References" @default.
- W4205760039 cites W1499423998 @default.
- W4205760039 cites W1505963628 @default.
- W4205760039 cites W151089287 @default.
- W4205760039 cites W1523675863 @default.
- W4205760039 cites W1524292169 @default.
- W4205760039 cites W1602747135 @default.
- W4205760039 cites W1963835162 @default.
- W4205760039 cites W1964121662 @default.
- W4205760039 cites W1965805718 @default.
- W4205760039 cites W1966703632 @default.
- W4205760039 cites W1966722737 @default.
- W4205760039 cites W1966981648 @default.
- W4205760039 cites W1967950470 @default.
- W4205760039 cites W1968055075 @default.
- W4205760039 cites W1968536851 @default.
- W4205760039 cites W1968991680 @default.
- W4205760039 cites W1970155695 @default.
- W4205760039 cites W1972299561 @default.
- W4205760039 cites W1974446981 @default.
- W4205760039 cites W1974752214 @default.
- W4205760039 cites W1974957293 @default.
- W4205760039 cites W1975824708 @default.
- W4205760039 cites W1976555389 @default.
- W4205760039 cites W1977083555 @default.
- W4205760039 cites W1977104556 @default.
- W4205760039 cites W1977306591 @default.
- W4205760039 cites W1978120028 @default.
- W4205760039 cites W1978598748 @default.
- W4205760039 cites W1979001693 @default.
- W4205760039 cites W1979275840 @default.
- W4205760039 cites W1979736713 @default.
- W4205760039 cites W1980519774 @default.
- W4205760039 cites W1981410988 @default.
- W4205760039 cites W1981442787 @default.
- W4205760039 cites W1982858396 @default.
- W4205760039 cites W1982873973 @default.
- W4205760039 cites W1982905119 @default.
- W4205760039 cites W1984450459 @default.
- W4205760039 cites W1985943913 @default.
- W4205760039 cites W1987023607 @default.
- W4205760039 cites W1988369141 @default.
- W4205760039 cites W1989464365 @default.
- W4205760039 cites W1989709457 @default.
- W4205760039 cites W1990674531 @default.
- W4205760039 cites W1990919990 @default.
- W4205760039 cites W1991830619 @default.
- W4205760039 cites W1992243988 @default.
- W4205760039 cites W1992308222 @default.
- W4205760039 cites W1992508672 @default.
- W4205760039 cites W1992542898 @default.
- W4205760039 cites W1993499112 @default.
- W4205760039 cites W1993535817 @default.
- W4205760039 cites W1994154246 @default.
- W4205760039 cites W1994425386 @default.
- W4205760039 cites W1995247157 @default.
- W4205760039 cites W1995306940 @default.
- W4205760039 cites W1995320125 @default.
- W4205760039 cites W1995566979 @default.
- W4205760039 cites W1995694895 @default.
- W4205760039 cites W1996100147 @default.
- W4205760039 cites W1996244309 @default.
- W4205760039 cites W1997420066 @default.
- W4205760039 cites W1998102090 @default.
- W4205760039 cites W1998829403 @default.
- W4205760039 cites W2001998403 @default.
- W4205760039 cites W2002282394 @default.
- W4205760039 cites W2003097253 @default.
- W4205760039 cites W2003120705 @default.
- W4205760039 cites W2003858682 @default.
- W4205760039 cites W2004443337 @default.
- W4205760039 cites W2005389307 @default.
- W4205760039 cites W2005440573 @default.
- W4205760039 cites W2005568707 @default.
- W4205760039 cites W2007320054 @default.
- W4205760039 cites W2007667309 @default.
- W4205760039 cites W2008401819 @default.
- W4205760039 cites W2009368029 @default.
- W4205760039 cites W2010576282 @default.
- W4205760039 cites W2011205262 @default.
- W4205760039 cites W2011669849 @default.
- W4205760039 cites W2011719965 @default.
- W4205760039 cites W2012241705 @default.
- W4205760039 cites W2012651672 @default.
- W4205760039 cites W2013574812 @default.
- W4205760039 cites W2014143870 @default.
- W4205760039 cites W2014570313 @default.
- W4205760039 cites W2015935174 @default.
- W4205760039 cites W2016242206 @default.
- W4205760039 cites W2017336185 @default.
- W4205760039 cites W2017657344 @default.
- W4205760039 cites W2017775927 @default.
- W4205760039 cites W2018631597 @default.
- W4205760039 cites W2018714529 @default.