Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205784142> ?p ?o ?g. }
- W4205784142 endingPage "1956" @default.
- W4205784142 startingPage "1944" @default.
- W4205784142 abstract "Abstract Degradation data and failure‐time data are two types of data commonly used in reliability analysis. Both types of data are collected from different sources for reliability analysis of complex products. For highly reliable products, however, it is often difficult to collect sufficient useful data for reliability analysis with high accuracy, which poses the challenge for small sample size problems, that is, single‐type data with few samples. In this paper, three novel Bayesian information fusion models are first proposed to characterize the inherent relationship between the failure‐time data and the degradation data, and further to integrate the heterogeneous data to obtain accurate reliability analysis results under small sample size. Then, a model selection method is developed to choose appropriate model from the Wiener process, gamma process, and IG process models. Finally, the reliability analysis is completed based on the parameter estimation of the Bayesian information fusion model with the aid of the MCMC method. An industrial example is presented to demonstrate the effectiveness of the proposed Bayesian information fusion method." @default.
- W4205784142 created "2022-01-26" @default.
- W4205784142 creator A5003022560 @default.
- W4205784142 creator A5026429037 @default.
- W4205784142 creator A5069596116 @default.
- W4205784142 creator A5079921526 @default.
- W4205784142 date "2022-01-06" @default.
- W4205784142 modified "2023-10-16" @default.
- W4205784142 title "Bayesian information fusion method for reliability analysis with failure‐time data and degradation data" @default.
- W4205784142 cites W1989801228 @default.
- W4205784142 cites W2028994726 @default.
- W4205784142 cites W2037355783 @default.
- W4205784142 cites W2049045003 @default.
- W4205784142 cites W2057765075 @default.
- W4205784142 cites W2072999804 @default.
- W4205784142 cites W2076914223 @default.
- W4205784142 cites W2085014394 @default.
- W4205784142 cites W2112935810 @default.
- W4205784142 cites W2126216794 @default.
- W4205784142 cites W2142635246 @default.
- W4205784142 cites W2168175751 @default.
- W4205784142 cites W2537481727 @default.
- W4205784142 cites W2558020939 @default.
- W4205784142 cites W2561529988 @default.
- W4205784142 cites W2618923818 @default.
- W4205784142 cites W2620691296 @default.
- W4205784142 cites W2744569329 @default.
- W4205784142 cites W2765751661 @default.
- W4205784142 cites W2793058854 @default.
- W4205784142 cites W2796628542 @default.
- W4205784142 cites W2889513781 @default.
- W4205784142 cites W2895715583 @default.
- W4205784142 cites W2898683876 @default.
- W4205784142 cites W2902863413 @default.
- W4205784142 cites W2921496741 @default.
- W4205784142 cites W2972635416 @default.
- W4205784142 cites W2982465647 @default.
- W4205784142 cites W2987349171 @default.
- W4205784142 cites W2993664409 @default.
- W4205784142 cites W2997167814 @default.
- W4205784142 cites W3000375486 @default.
- W4205784142 cites W3011086538 @default.
- W4205784142 cites W3014833255 @default.
- W4205784142 cites W3022276494 @default.
- W4205784142 cites W3039293687 @default.
- W4205784142 cites W3085337480 @default.
- W4205784142 cites W3087146381 @default.
- W4205784142 cites W3093356148 @default.
- W4205784142 cites W3104441725 @default.
- W4205784142 cites W3106857833 @default.
- W4205784142 cites W3127955444 @default.
- W4205784142 cites W3156011754 @default.
- W4205784142 cites W3156608659 @default.
- W4205784142 cites W3164121440 @default.
- W4205784142 cites W3177611307 @default.
- W4205784142 cites W3182422625 @default.
- W4205784142 cites W3193124647 @default.
- W4205784142 cites W3206391291 @default.
- W4205784142 doi "https://doi.org/10.1002/qre.3065" @default.
- W4205784142 hasPublicationYear "2022" @default.
- W4205784142 type Work @default.
- W4205784142 citedByCount "6" @default.
- W4205784142 countsByYear W42057841422022 @default.
- W4205784142 countsByYear W42057841422023 @default.
- W4205784142 crossrefType "journal-article" @default.
- W4205784142 hasAuthorship W4205784142A5003022560 @default.
- W4205784142 hasAuthorship W4205784142A5026429037 @default.
- W4205784142 hasAuthorship W4205784142A5069596116 @default.
- W4205784142 hasAuthorship W4205784142A5079921526 @default.
- W4205784142 hasConcept C105795698 @default.
- W4205784142 hasConcept C107673813 @default.
- W4205784142 hasConcept C111919701 @default.
- W4205784142 hasConcept C119857082 @default.
- W4205784142 hasConcept C121332964 @default.
- W4205784142 hasConcept C124101348 @default.
- W4205784142 hasConcept C127413603 @default.
- W4205784142 hasConcept C129848803 @default.
- W4205784142 hasConcept C154945302 @default.
- W4205784142 hasConcept C163258240 @default.
- W4205784142 hasConcept C185592680 @default.
- W4205784142 hasConcept C198531522 @default.
- W4205784142 hasConcept C200601418 @default.
- W4205784142 hasConcept C33923547 @default.
- W4205784142 hasConcept C33954974 @default.
- W4205784142 hasConcept C41008148 @default.
- W4205784142 hasConcept C43214815 @default.
- W4205784142 hasConcept C43617362 @default.
- W4205784142 hasConcept C62520636 @default.
- W4205784142 hasConcept C98045186 @default.
- W4205784142 hasConceptScore W4205784142C105795698 @default.
- W4205784142 hasConceptScore W4205784142C107673813 @default.
- W4205784142 hasConceptScore W4205784142C111919701 @default.
- W4205784142 hasConceptScore W4205784142C119857082 @default.
- W4205784142 hasConceptScore W4205784142C121332964 @default.
- W4205784142 hasConceptScore W4205784142C124101348 @default.
- W4205784142 hasConceptScore W4205784142C127413603 @default.
- W4205784142 hasConceptScore W4205784142C129848803 @default.
- W4205784142 hasConceptScore W4205784142C154945302 @default.