Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205802011> ?p ?o ?g. }
- W4205802011 endingPage "127947" @default.
- W4205802011 startingPage "127947" @default.
- W4205802011 abstract "The major problem of multiparameter quantum estimation theory is to find an ultimate measurement scheme to go beyond the standard quantum limits that each quasi-classical estimation measurement is limited by. Although, in some specifics quantum protocols without environmental noise, the ultimate sensitivity of a multiparameter quantum estimation can beat the standard quantum limit. However, the presence of noise imposes limitations on the enhancement of precision due to the inevitable existence of environmental fluctuations. Here, we address the motivation behind the usage of Gaussian quantum resources and their advantages in reaching the standard quantum limits under realistic noise. In this context, our work aims to explore the ultimate limits of precision for the simultaneous estimation of a pair of parameters that characterize the displacement channel acting on Gaussian probes and subjected to open dynamics. More precisely, we focus on a general two-mode mixed squeezed displaced thermal state, after reducing it to various Gaussian probes states, like; a two-mode pure squeezed vacuum, two-mode pure displaced vacuum, two-mode mixed displaced thermal, two-mode mixed squeezed thermal. To study the ultimate estimation precision, we evaluate the upper and bottom bound of HCRB in various cases. We find that when the entangled states, two-mode pure squeezed vacuum and two-mode mixed squeezed thermal, are employed as probes states, the upper and bottom bound of HCRB beats the standard quantum limit in the presence of a noisy environment." @default.
- W4205802011 created "2022-01-25" @default.
- W4205802011 creator A5016056943 @default.
- W4205802011 creator A5066138638 @default.
- W4205802011 date "2022-03-01" @default.
- W4205802011 modified "2023-10-17" @default.
- W4205802011 title "Ultimate precision of joint parameter estimation under noisy Gaussian environment" @default.
- W4205802011 cites W1631356911 @default.
- W4205802011 cites W1875607807 @default.
- W4205802011 cites W1891741694 @default.
- W4205802011 cites W1970948459 @default.
- W4205802011 cites W1971851949 @default.
- W4205802011 cites W1973266480 @default.
- W4205802011 cites W1973400531 @default.
- W4205802011 cites W1973501585 @default.
- W4205802011 cites W1976280626 @default.
- W4205802011 cites W1978002839 @default.
- W4205802011 cites W1978624511 @default.
- W4205802011 cites W1981983416 @default.
- W4205802011 cites W1982574512 @default.
- W4205802011 cites W1983173896 @default.
- W4205802011 cites W1985484222 @default.
- W4205802011 cites W1988562316 @default.
- W4205802011 cites W1992468296 @default.
- W4205802011 cites W1993122650 @default.
- W4205802011 cites W1994411097 @default.
- W4205802011 cites W1996426210 @default.
- W4205802011 cites W2008137742 @default.
- W4205802011 cites W2015632215 @default.
- W4205802011 cites W2017889196 @default.
- W4205802011 cites W2027807896 @default.
- W4205802011 cites W2028374995 @default.
- W4205802011 cites W2030479009 @default.
- W4205802011 cites W2032147770 @default.
- W4205802011 cites W2040133029 @default.
- W4205802011 cites W2045714154 @default.
- W4205802011 cites W2048158626 @default.
- W4205802011 cites W2050151514 @default.
- W4205802011 cites W2050658878 @default.
- W4205802011 cites W2051869207 @default.
- W4205802011 cites W2063043900 @default.
- W4205802011 cites W2063442328 @default.
- W4205802011 cites W2065730083 @default.
- W4205802011 cites W2072049807 @default.
- W4205802011 cites W2072055974 @default.
- W4205802011 cites W2074495294 @default.
- W4205802011 cites W2083423624 @default.
- W4205802011 cites W2091827434 @default.
- W4205802011 cites W2100935653 @default.
- W4205802011 cites W2101336703 @default.
- W4205802011 cites W2108043809 @default.
- W4205802011 cites W2142047822 @default.
- W4205802011 cites W2142520301 @default.
- W4205802011 cites W2142739935 @default.
- W4205802011 cites W2160409148 @default.
- W4205802011 cites W2163525631 @default.
- W4205802011 cites W2167461001 @default.
- W4205802011 cites W2256650768 @default.
- W4205802011 cites W2412244584 @default.
- W4205802011 cites W2430431519 @default.
- W4205802011 cites W2469681197 @default.
- W4205802011 cites W2484128055 @default.
- W4205802011 cites W2601162998 @default.
- W4205802011 cites W2610827583 @default.
- W4205802011 cites W2738184551 @default.
- W4205802011 cites W2763152578 @default.
- W4205802011 cites W2769763683 @default.
- W4205802011 cites W2788810509 @default.
- W4205802011 cites W2885261252 @default.
- W4205802011 cites W2936400227 @default.
- W4205802011 cites W2941002574 @default.
- W4205802011 cites W2970581988 @default.
- W4205802011 cites W2985862539 @default.
- W4205802011 cites W3004436163 @default.
- W4205802011 cites W3037089521 @default.
- W4205802011 cites W3037776276 @default.
- W4205802011 cites W3037853801 @default.
- W4205802011 cites W3098360175 @default.
- W4205802011 cites W3099540768 @default.
- W4205802011 cites W3100302244 @default.
- W4205802011 cites W3100351581 @default.
- W4205802011 cites W3101118225 @default.
- W4205802011 cites W3103403849 @default.
- W4205802011 cites W3104803627 @default.
- W4205802011 cites W3105367468 @default.
- W4205802011 cites W3105429382 @default.
- W4205802011 cites W3110471435 @default.
- W4205802011 doi "https://doi.org/10.1016/j.physleta.2022.127947" @default.
- W4205802011 hasPublicationYear "2022" @default.
- W4205802011 type Work @default.
- W4205802011 citedByCount "2" @default.
- W4205802011 countsByYear W42058020112022 @default.
- W4205802011 crossrefType "journal-article" @default.
- W4205802011 hasAuthorship W4205802011A5016056943 @default.
- W4205802011 hasAuthorship W4205802011A5066138638 @default.
- W4205802011 hasBestOaLocation W42058020112 @default.
- W4205802011 hasConcept C111996192 @default.
- W4205802011 hasConcept C115961682 @default.