Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205866548> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4205866548 endingPage "110069" @default.
- W4205866548 startingPage "110069" @default.
- W4205866548 abstract "In this work, a data-driven surrogate to high-fidelity numerical simulations is developed to replace the numerical simulations of porous media., This model can accurately predict flow fields for new sets of simulation runs by learning the communications among grid cells in the numerical domain. Because of the many possible random arrangements of particles and their orientation to each other, generalization of permeability with high accuracy is not trivial — nor is it practical using conventional means. Furthermore, building a comprehensive database for different grain/pore arrangements is impossible because of the cost of running numerical simulations to generate the database that represents all possible arrangements. The objective is to predict grid-level flow fields in porous media as a priori to determine the permeability of porous media. This work is a continuation of our previous research. The rationale is that once the detailed grid-level dynamics can be accurately predicted using a data-driven approach, for any configuration/topology of the porous media, the detailed dynamics could be predicted without any need for new expensive new numerical simulation runs. In this work, we improved previous work by accurately predicting permeability of the porous media, irrespective of the grain density, pore/grain shape, with a significant reduction in computational time as opposed to previous work, which was limited to a unique grain shape/size. The surrogate model is developed by employing a deep learning technique using high-fidelity numerical simulations for two-dimensional porous media consisting of circular grains, generated by varying the number and size of the circular solid grains. The robustness of the developed model is then tested for numerous variations of porous media – generated by changing the number and size of the solid grain angularity and elongation – which have not been used for developing the model. The deep convolutional neural network employed in this work combines deep U-Net and ResNet structures to capture context and enable precise localization while avoiding issues in training caused by vanishing gradients." @default.
- W4205866548 created "2022-01-25" @default.
- W4205866548 creator A5059039054 @default.
- W4205866548 creator A5065651212 @default.
- W4205866548 creator A5075223706 @default.
- W4205866548 creator A5091813714 @default.
- W4205866548 date "2022-04-01" @default.
- W4205866548 modified "2023-10-16" @default.
- W4205866548 title "A deep learning approach to predicting permeability of porous media" @default.
- W4205866548 cites W1903029394 @default.
- W4205866548 cites W1985635555 @default.
- W4205866548 cites W1989896815 @default.
- W4205866548 cites W2034732093 @default.
- W4205866548 cites W2048806419 @default.
- W4205866548 cites W2100495367 @default.
- W4205866548 cites W2106146968 @default.
- W4205866548 cites W2180503039 @default.
- W4205866548 cites W2194775991 @default.
- W4205866548 cites W2784733489 @default.
- W4205866548 cites W2792952603 @default.
- W4205866548 cites W2795664256 @default.
- W4205866548 cites W2888331556 @default.
- W4205866548 cites W2896338148 @default.
- W4205866548 cites W2948230027 @default.
- W4205866548 cites W2963073614 @default.
- W4205866548 cites W2982353498 @default.
- W4205866548 cites W3008149932 @default.
- W4205866548 cites W3100968477 @default.
- W4205866548 doi "https://doi.org/10.1016/j.petrol.2021.110069" @default.
- W4205866548 hasPublicationYear "2022" @default.
- W4205866548 type Work @default.
- W4205866548 citedByCount "6" @default.
- W4205866548 countsByYear W42058665482023 @default.
- W4205866548 crossrefType "journal-article" @default.
- W4205866548 hasAuthorship W4205866548A5059039054 @default.
- W4205866548 hasAuthorship W4205866548A5065651212 @default.
- W4205866548 hasAuthorship W4205866548A5075223706 @default.
- W4205866548 hasAuthorship W4205866548A5091813714 @default.
- W4205866548 hasConcept C105569014 @default.
- W4205866548 hasConcept C11413529 @default.
- W4205866548 hasConcept C120882062 @default.
- W4205866548 hasConcept C121332964 @default.
- W4205866548 hasConcept C127313418 @default.
- W4205866548 hasConcept C127413603 @default.
- W4205866548 hasConcept C187320778 @default.
- W4205866548 hasConcept C18762648 @default.
- W4205866548 hasConcept C187691185 @default.
- W4205866548 hasConcept C2524010 @default.
- W4205866548 hasConcept C33923547 @default.
- W4205866548 hasConcept C41008148 @default.
- W4205866548 hasConcept C41625074 @default.
- W4205866548 hasConcept C44154836 @default.
- W4205866548 hasConcept C500300565 @default.
- W4205866548 hasConcept C54355233 @default.
- W4205866548 hasConcept C57879066 @default.
- W4205866548 hasConcept C6648577 @default.
- W4205866548 hasConcept C78519656 @default.
- W4205866548 hasConcept C86803240 @default.
- W4205866548 hasConceptScore W4205866548C105569014 @default.
- W4205866548 hasConceptScore W4205866548C11413529 @default.
- W4205866548 hasConceptScore W4205866548C120882062 @default.
- W4205866548 hasConceptScore W4205866548C121332964 @default.
- W4205866548 hasConceptScore W4205866548C127313418 @default.
- W4205866548 hasConceptScore W4205866548C127413603 @default.
- W4205866548 hasConceptScore W4205866548C187320778 @default.
- W4205866548 hasConceptScore W4205866548C18762648 @default.
- W4205866548 hasConceptScore W4205866548C187691185 @default.
- W4205866548 hasConceptScore W4205866548C2524010 @default.
- W4205866548 hasConceptScore W4205866548C33923547 @default.
- W4205866548 hasConceptScore W4205866548C41008148 @default.
- W4205866548 hasConceptScore W4205866548C41625074 @default.
- W4205866548 hasConceptScore W4205866548C44154836 @default.
- W4205866548 hasConceptScore W4205866548C500300565 @default.
- W4205866548 hasConceptScore W4205866548C54355233 @default.
- W4205866548 hasConceptScore W4205866548C57879066 @default.
- W4205866548 hasConceptScore W4205866548C6648577 @default.
- W4205866548 hasConceptScore W4205866548C78519656 @default.
- W4205866548 hasConceptScore W4205866548C86803240 @default.
- W4205866548 hasLocation W42058665481 @default.
- W4205866548 hasOpenAccess W4205866548 @default.
- W4205866548 hasPrimaryLocation W42058665481 @default.
- W4205866548 hasRelatedWork W1735300015 @default.
- W4205866548 hasRelatedWork W2009450764 @default.
- W4205866548 hasRelatedWork W2171164076 @default.
- W4205866548 hasRelatedWork W2300302298 @default.
- W4205866548 hasRelatedWork W2380853138 @default.
- W4205866548 hasRelatedWork W2607003592 @default.
- W4205866548 hasRelatedWork W2804784236 @default.
- W4205866548 hasRelatedWork W3205070550 @default.
- W4205866548 hasRelatedWork W4307830884 @default.
- W4205866548 hasRelatedWork W4317242294 @default.
- W4205866548 hasVolume "211" @default.
- W4205866548 isParatext "false" @default.
- W4205866548 isRetracted "false" @default.
- W4205866548 workType "article" @default.