Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205873860> ?p ?o ?g. }
- W4205873860 abstract "<sec> <title>BACKGROUND</title> In December 2019, a few coronavirus disease (COVID-19) cases were first reported in Wuhan, Hubei, China. Soon after, increasing numbers of cases were detected in other parts of China, eventually leading to a disease outbreak in China. As this dreadful disease spreads rapidly, the mass media has been active in community education on COVID-19 by delivering health information about this novel coronavirus, such as its pathogenesis, spread, prevention, and containment. </sec> <sec> <title>OBJECTIVE</title> The aim of this study was to collect media reports on COVID-19 and investigate the patterns of media-directed health communications as well as the role of the media in this ongoing COVID-19 crisis in China. </sec> <sec> <title>METHODS</title> We adopted the WiseSearch database to extract related news articles about the coronavirus from major press media between January 1, 2020, and February 20, 2020. We then sorted and analyzed the data using Python software and Python package Jieba. We sought a suitable topic number with evidence of the coherence number. We operated latent Dirichlet allocation topic modeling with a suitable topic number and generated corresponding keywords and topic names. We then divided these topics into different themes by plotting them into a 2D plane via multidimensional scaling. </sec> <sec> <title>RESULTS</title> After removing duplications and irrelevant reports, our search identified 7791 relevant news reports. We listed the number of articles published per day. According to the coherence value, we chose 20 as the number of topics and generated the topics’ themes and keywords. These topics were categorized into nine main primary themes based on the topic visualization figure. The top three most popular themes were prevention and control procedures, medical treatment and research, and global or local social and economic influences, accounting for 32.57% (n=2538), 16.08% (n=1258), and 11.79% (n=919) of the collected reports, respectively. </sec> <sec> <title>CONCLUSIONS</title> Topic modeling of news articles can produce useful information about the significance of mass media for early health communication. Comparing the number of articles for each day and the outbreak development, we noted that mass media news reports in China lagged behind the development of COVID-19. The major themes accounted for around half the content and tended to focus on the larger society rather than on individuals. The COVID-19 crisis has become a worldwide issue, and society has become concerned about donations and support as well as mental health among others. We recommend that future work addresses the mass media’s actual impact on readers during the COVID-19 crisis through sentiment analysis of news data. </sec>" @default.
- W4205873860 created "2022-01-25" @default.
- W4205873860 creator A5002209738 @default.
- W4205873860 creator A5021796814 @default.
- W4205873860 creator A5028337876 @default.
- W4205873860 creator A5046378071 @default.
- W4205873860 creator A5048196632 @default.
- W4205873860 creator A5051278691 @default.
- W4205873860 creator A5052196656 @default.
- W4205873860 creator A5067852195 @default.
- W4205873860 creator A5086343332 @default.
- W4205873860 creator A5087971000 @default.
- W4205873860 creator A5089011756 @default.
- W4205873860 creator A5089336871 @default.
- W4205873860 date "2020-04-04" @default.
- W4205873860 modified "2023-10-18" @default.
- W4205873860 title "Health Communication Through News Media During the Early Stage of the COVID-19 Outbreak in China: Digital Topic Modeling Approach (Preprint)" @default.
- W4205873860 cites W1950831375 @default.
- W4205873860 cites W2001099499 @default.
- W4205873860 cites W2018798276 @default.
- W4205873860 cites W2019676294 @default.
- W4205873860 cites W2038043464 @default.
- W4205873860 cites W2090491854 @default.
- W4205873860 cites W2095655043 @default.
- W4205873860 cites W2110799391 @default.
- W4205873860 cites W2162317738 @default.
- W4205873860 cites W2186830126 @default.
- W4205873860 cites W2196348026 @default.
- W4205873860 cites W2790930661 @default.
- W4205873860 cites W2906760491 @default.
- W4205873860 cites W3000883359 @default.
- W4205873860 cites W3001118548 @default.
- W4205873860 cites W3003668884 @default.
- W4205873860 cites W3009906937 @default.
- W4205873860 cites W3012407807 @default.
- W4205873860 cites W4205727569 @default.
- W4205873860 doi "https://doi.org/10.2196/preprints.19118" @default.
- W4205873860 hasPublicationYear "2020" @default.
- W4205873860 type Work @default.
- W4205873860 citedByCount "2" @default.
- W4205873860 countsByYear W42058738602021 @default.
- W4205873860 countsByYear W42058738602023 @default.
- W4205873860 crossrefType "posted-content" @default.
- W4205873860 hasAuthorship W4205873860A5002209738 @default.
- W4205873860 hasAuthorship W4205873860A5021796814 @default.
- W4205873860 hasAuthorship W4205873860A5028337876 @default.
- W4205873860 hasAuthorship W4205873860A5046378071 @default.
- W4205873860 hasAuthorship W4205873860A5048196632 @default.
- W4205873860 hasAuthorship W4205873860A5051278691 @default.
- W4205873860 hasAuthorship W4205873860A5052196656 @default.
- W4205873860 hasAuthorship W4205873860A5067852195 @default.
- W4205873860 hasAuthorship W4205873860A5086343332 @default.
- W4205873860 hasAuthorship W4205873860A5087971000 @default.
- W4205873860 hasAuthorship W4205873860A5089011756 @default.
- W4205873860 hasAuthorship W4205873860A5089336871 @default.
- W4205873860 hasBestOaLocation W42058738602 @default.
- W4205873860 hasConcept C111919701 @default.
- W4205873860 hasConcept C116675565 @default.
- W4205873860 hasConcept C136764020 @default.
- W4205873860 hasConcept C142724271 @default.
- W4205873860 hasConcept C159047783 @default.
- W4205873860 hasConcept C166957645 @default.
- W4205873860 hasConcept C171686336 @default.
- W4205873860 hasConcept C191935318 @default.
- W4205873860 hasConcept C23123220 @default.
- W4205873860 hasConcept C2779134260 @default.
- W4205873860 hasConcept C3008058167 @default.
- W4205873860 hasConcept C41008148 @default.
- W4205873860 hasConcept C43169469 @default.
- W4205873860 hasConcept C500882744 @default.
- W4205873860 hasConcept C519991488 @default.
- W4205873860 hasConcept C524204448 @default.
- W4205873860 hasConcept C71924100 @default.
- W4205873860 hasConcept C95457728 @default.
- W4205873860 hasConceptScore W4205873860C111919701 @default.
- W4205873860 hasConceptScore W4205873860C116675565 @default.
- W4205873860 hasConceptScore W4205873860C136764020 @default.
- W4205873860 hasConceptScore W4205873860C142724271 @default.
- W4205873860 hasConceptScore W4205873860C159047783 @default.
- W4205873860 hasConceptScore W4205873860C166957645 @default.
- W4205873860 hasConceptScore W4205873860C171686336 @default.
- W4205873860 hasConceptScore W4205873860C191935318 @default.
- W4205873860 hasConceptScore W4205873860C23123220 @default.
- W4205873860 hasConceptScore W4205873860C2779134260 @default.
- W4205873860 hasConceptScore W4205873860C3008058167 @default.
- W4205873860 hasConceptScore W4205873860C41008148 @default.
- W4205873860 hasConceptScore W4205873860C43169469 @default.
- W4205873860 hasConceptScore W4205873860C500882744 @default.
- W4205873860 hasConceptScore W4205873860C519991488 @default.
- W4205873860 hasConceptScore W4205873860C524204448 @default.
- W4205873860 hasConceptScore W4205873860C71924100 @default.
- W4205873860 hasConceptScore W4205873860C95457728 @default.
- W4205873860 hasLocation W42058738601 @default.
- W4205873860 hasLocation W42058738602 @default.
- W4205873860 hasOpenAccess W4205873860 @default.
- W4205873860 hasPrimaryLocation W42058738601 @default.
- W4205873860 hasRelatedWork W2138028154 @default.
- W4205873860 hasRelatedWork W2370554703 @default.
- W4205873860 hasRelatedWork W2748952813 @default.
- W4205873860 hasRelatedWork W2769501189 @default.