Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205894230> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4205894230 endingPage "201" @default.
- W4205894230 startingPage "163" @default.
- W4205894230 abstract "Statistical models provide an alternative approach to using dynamical models in seasonal climate forecasting. In statistical models relationships between one set of data, the predictors, and a second set, the predictands, are sought. Common predictands include seasonal mean temperatures and accumulated precipitation, and are typically predicted using antecedent sea surface temperatures primarily within the tropical oceans. Predictions are made on the assumption that historically observed relationships are expected to apply in the future. There are many conditions for such an assumption to be valid, including the need for high-quality datasets to ensure that the historical relationships are robustly measured, and the need for relationships to have a sound theoretical basis. Because of the possibility of identifying spurious relationships between the predictors and the predictands, the statistical model should be tested carefully on independent data. Most statistical models are based on linear regression, which provides a “best guess” forecast under the assumption that a given change in the value of a predictor results in a constant change in the expected value of the predictand regardless of the value of the predictor. Modifications to the linear model can be made or alternative statistical procedures used when there is good reason to expect a relationship to be nonlinear. However, other weaknesses of linear regression may also require these alternatives to be considered seriously. The primary problems with linear regression are multiplicity, multicolinearity, and non-normality of the predictands. Multiplicity refers to the effects of having a large number of candidate predictors: the danger of finding a spurious relationship increases. Multicolinearity arises when more than one predictor is used in the model and there are strong relationships between the predictors which can result in large errors in calculating the parameters of the model. Finally, a linear regression model may not be adequately constructed if the data being predicted have a strongly skewed or otherwise non-Gaussian distribution; seasonally accumulated precipitation often exhibits such problems. Alternative forms of linear and non-linear statistical models can be applied to address such distributional problems." @default.
- W4205894230 created "2022-01-25" @default.
- W4205894230 creator A5072169034 @default.
- W4205894230 creator A5077291242 @default.
- W4205894230 date "2008-01-28" @default.
- W4205894230 modified "2023-10-01" @default.
- W4205894230 title "Statistical Modelling" @default.
- W4205894230 doi "https://doi.org/10.1007/978-1-4020-6992-5_7" @default.
- W4205894230 hasPublicationYear "2008" @default.
- W4205894230 type Work @default.
- W4205894230 citedByCount "13" @default.
- W4205894230 countsByYear W42058942302013 @default.
- W4205894230 countsByYear W42058942302014 @default.
- W4205894230 countsByYear W42058942302016 @default.
- W4205894230 countsByYear W42058942302017 @default.
- W4205894230 countsByYear W42058942302018 @default.
- W4205894230 countsByYear W42058942302019 @default.
- W4205894230 countsByYear W42058942302021 @default.
- W4205894230 countsByYear W42058942302023 @default.
- W4205894230 crossrefType "book-chapter" @default.
- W4205894230 hasAuthorship W4205894230A5072169034 @default.
- W4205894230 hasAuthorship W4205894230A5077291242 @default.
- W4205894230 hasConcept C105795698 @default.
- W4205894230 hasConcept C114289077 @default.
- W4205894230 hasConcept C149782125 @default.
- W4205894230 hasConcept C152877465 @default.
- W4205894230 hasConcept C163175372 @default.
- W4205894230 hasConcept C189285262 @default.
- W4205894230 hasConcept C33923547 @default.
- W4205894230 hasConcept C48921125 @default.
- W4205894230 hasConcept C97256817 @default.
- W4205894230 hasConceptScore W4205894230C105795698 @default.
- W4205894230 hasConceptScore W4205894230C114289077 @default.
- W4205894230 hasConceptScore W4205894230C149782125 @default.
- W4205894230 hasConceptScore W4205894230C152877465 @default.
- W4205894230 hasConceptScore W4205894230C163175372 @default.
- W4205894230 hasConceptScore W4205894230C189285262 @default.
- W4205894230 hasConceptScore W4205894230C33923547 @default.
- W4205894230 hasConceptScore W4205894230C48921125 @default.
- W4205894230 hasConceptScore W4205894230C97256817 @default.
- W4205894230 hasLocation W42058942301 @default.
- W4205894230 hasOpenAccess W4205894230 @default.
- W4205894230 hasPrimaryLocation W42058942301 @default.
- W4205894230 hasRelatedWork W188292369 @default.
- W4205894230 hasRelatedWork W1983471362 @default.
- W4205894230 hasRelatedWork W2471082825 @default.
- W4205894230 hasRelatedWork W2566756418 @default.
- W4205894230 hasRelatedWork W2624501724 @default.
- W4205894230 hasRelatedWork W2957606078 @default.
- W4205894230 hasRelatedWork W2979774498 @default.
- W4205894230 hasRelatedWork W302079055 @default.
- W4205894230 hasRelatedWork W3163084994 @default.
- W4205894230 hasRelatedWork W641278561 @default.
- W4205894230 isParatext "false" @default.
- W4205894230 isRetracted "false" @default.
- W4205894230 workType "book-chapter" @default.