Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205897305> ?p ?o ?g. }
- W4205897305 abstract "Modern machine learning techniques require a huge amount of training data for satisfactory performance. This limits the application of these techniques in classifying EEG signals due to the non-availability of huge datasets. One way to mitigate this problem is by using data augmentation techniques to increase the number of training samples. In this paper, a novel common spatial pattern (CSP) based data augmentation technique is proposed. The efficiency of the proposed method is demonstrated by training a deep neural network (DNN) on the augmented dataset for decoding imagined speech from EEG. Using CSP, nine EEG channels that best represent the underlying cortical activity corresponding to the imagination of the words “in” and “cooperate” are identified, and discrete wavelet transform (DWT) features are extracted for each of these channels. Treating the selected EEG corresponding to each imagined word as an independent sample helps in providing enough samples to train the DNN. Maximum voting is applied to the results of individual feature vectors of each trial to obtain the predicted class label. We have obtained accuracies exceeding change level accuracies across subjects, which indicates that the network is able to generalize well." @default.
- W4205897305 created "2022-01-26" @default.
- W4205897305 creator A5040865372 @default.
- W4205897305 creator A5053785006 @default.
- W4205897305 creator A5085452370 @default.
- W4205897305 date "2021-07-09" @default.
- W4205897305 modified "2023-10-02" @default.
- W4205897305 title "Common Spatial Pattern Based Data Augmentation Technique for Decoding Imagined Speech" @default.
- W4205897305 cites W1548619183 @default.
- W4205897305 cites W1599001363 @default.
- W4205897305 cites W1990746954 @default.
- W4205897305 cites W1993716436 @default.
- W4205897305 cites W2001121503 @default.
- W4205897305 cites W2010625877 @default.
- W4205897305 cites W2038120455 @default.
- W4205897305 cites W2053887124 @default.
- W4205897305 cites W2118040411 @default.
- W4205897305 cites W2118949016 @default.
- W4205897305 cites W2128909182 @default.
- W4205897305 cites W2129203136 @default.
- W4205897305 cites W2152119085 @default.
- W4205897305 cites W2297037927 @default.
- W4205897305 cites W2521878393 @default.
- W4205897305 cites W2565622304 @default.
- W4205897305 cites W2590420622 @default.
- W4205897305 cites W2739095506 @default.
- W4205897305 cites W2742781500 @default.
- W4205897305 cites W2769268658 @default.
- W4205897305 cites W2783914690 @default.
- W4205897305 cites W2792687613 @default.
- W4205897305 cites W2797228959 @default.
- W4205897305 cites W2889782437 @default.
- W4205897305 cites W2890542782 @default.
- W4205897305 cites W2898664946 @default.
- W4205897305 cites W2898677863 @default.
- W4205897305 cites W2898734263 @default.
- W4205897305 cites W2899534186 @default.
- W4205897305 cites W2904050376 @default.
- W4205897305 cites W2939344111 @default.
- W4205897305 cites W2944559085 @default.
- W4205897305 cites W2946520801 @default.
- W4205897305 cites W2962777715 @default.
- W4205897305 cites W2963602241 @default.
- W4205897305 cites W2964267916 @default.
- W4205897305 cites W2964576881 @default.
- W4205897305 cites W2965956173 @default.
- W4205897305 cites W2970157164 @default.
- W4205897305 cites W2976167176 @default.
- W4205897305 cites W2979298713 @default.
- W4205897305 cites W2979885891 @default.
- W4205897305 cites W2980122834 @default.
- W4205897305 cites W3046474724 @default.
- W4205897305 cites W3047118889 @default.
- W4205897305 cites W3049410214 @default.
- W4205897305 cites W3088043725 @default.
- W4205897305 cites W3098167545 @default.
- W4205897305 cites W3109832790 @default.
- W4205897305 cites W3157504026 @default.
- W4205897305 cites W772526079 @default.
- W4205897305 doi "https://doi.org/10.1109/conecct52877.2021.9622684" @default.
- W4205897305 hasPublicationYear "2021" @default.
- W4205897305 type Work @default.
- W4205897305 citedByCount "1" @default.
- W4205897305 countsByYear W42058973052023 @default.
- W4205897305 crossrefType "proceedings-article" @default.
- W4205897305 hasAuthorship W4205897305A5040865372 @default.
- W4205897305 hasAuthorship W4205897305A5053785006 @default.
- W4205897305 hasAuthorship W4205897305A5085452370 @default.
- W4205897305 hasConcept C11413529 @default.
- W4205897305 hasConcept C118552586 @default.
- W4205897305 hasConcept C119857082 @default.
- W4205897305 hasConcept C127162648 @default.
- W4205897305 hasConcept C138885662 @default.
- W4205897305 hasConcept C153180895 @default.
- W4205897305 hasConcept C154945302 @default.
- W4205897305 hasConcept C15744967 @default.
- W4205897305 hasConcept C185592680 @default.
- W4205897305 hasConcept C198531522 @default.
- W4205897305 hasConcept C2524010 @default.
- W4205897305 hasConcept C2776401178 @default.
- W4205897305 hasConcept C2777212361 @default.
- W4205897305 hasConcept C28490314 @default.
- W4205897305 hasConcept C31258907 @default.
- W4205897305 hasConcept C33923547 @default.
- W4205897305 hasConcept C41008148 @default.
- W4205897305 hasConcept C41895202 @default.
- W4205897305 hasConcept C43617362 @default.
- W4205897305 hasConcept C50644808 @default.
- W4205897305 hasConcept C522805319 @default.
- W4205897305 hasConcept C57273362 @default.
- W4205897305 hasConcept C90805587 @default.
- W4205897305 hasConceptScore W4205897305C11413529 @default.
- W4205897305 hasConceptScore W4205897305C118552586 @default.
- W4205897305 hasConceptScore W4205897305C119857082 @default.
- W4205897305 hasConceptScore W4205897305C127162648 @default.
- W4205897305 hasConceptScore W4205897305C138885662 @default.
- W4205897305 hasConceptScore W4205897305C153180895 @default.
- W4205897305 hasConceptScore W4205897305C154945302 @default.
- W4205897305 hasConceptScore W4205897305C15744967 @default.
- W4205897305 hasConceptScore W4205897305C185592680 @default.