Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205909417> ?p ?o ?g. }
- W4205909417 abstract "Abstract With data becoming a salient asset worldwide, dependence amongst data kept on growing. Hence the real-world datasets that one works upon in today’s time are highly correlated. Since the past few years, researchers have given attention to this aspect of data privacy and found a correlation among data. The existing data privacy guarantees cannot assure the expected data privacy algorithms. The privacy guarantees provided by existing algorithms were enough when there existed no relation between data in the datasets. Hence, by keeping the existence of data correlation into account, there is a dire need to reconsider the privacy algorithms. Some of the research has considered utilizing a well-known machine learning concept, i.e., Data Correlation Analysis, to understand the relationship between data in a better way. This concept has given some promising results as well. Though it is still concise, the researchers did a considerable amount of research on correlated data privacy. Researchers have provided solutions using probabilistic models, behavioral analysis, sensitivity analysis, information theory models, statistical correlation analysis, exhaustive combination analysis, temporal privacy leakages, and weighted hierarchical graphs. Nevertheless, researchers are doing work upon the real-world datasets that are often large (technologically termed big data) and house a high amount of data correlation. Firstly, the data correlation in big data must be studied. Researchers are exploring different analysis techniques to find the best suitable. Then, they might suggest a measure to guarantee privacy for correlated big data. This survey paper presents a detailed survey of the methods proposed by different researchers to deal with the problem of correlated data privacy and correlated big data privacy and highlights the future scope in this area. The quantitative analysis of the reviewed articles suggests that data correlation is a significant threat to data privacy. This threat further gets magnified with big data. While considering and analyzing data correlation, then parameters such as Maximum queries executed, Mean average error values show better results when compared with other methods. Hence, there is a grave need to understand and propose solutions for correlated big data privacy." @default.
- W4205909417 created "2022-01-25" @default.
- W4205909417 creator A5030501294 @default.
- W4205909417 creator A5039694404 @default.
- W4205909417 creator A5078315531 @default.
- W4205909417 creator A5085879637 @default.
- W4205909417 date "2021-12-01" @default.
- W4205909417 modified "2023-09-27" @default.
- W4205909417 title "Machine learning concepts for correlated Big Data privacy" @default.
- W4205909417 cites W1526797722 @default.
- W4205909417 cites W1551688898 @default.
- W4205909417 cites W1640771061 @default.
- W4205909417 cites W1992697866 @default.
- W4205909417 cites W2019704260 @default.
- W4205909417 cites W2019735187 @default.
- W4205909417 cites W2033092546 @default.
- W4205909417 cites W2054922243 @default.
- W4205909417 cites W2060041315 @default.
- W4205909417 cites W2081969355 @default.
- W4205909417 cites W2085472312 @default.
- W4205909417 cites W2105896409 @default.
- W4205909417 cites W2108782127 @default.
- W4205909417 cites W2113207826 @default.
- W4205909417 cites W2134167315 @default.
- W4205909417 cites W2136114025 @default.
- W4205909417 cites W2152239535 @default.
- W4205909417 cites W2165700458 @default.
- W4205909417 cites W2294409705 @default.
- W4205909417 cites W2404754059 @default.
- W4205909417 cites W2538244214 @default.
- W4205909417 cites W2539944395 @default.
- W4205909417 cites W2549955619 @default.
- W4205909417 cites W2555586695 @default.
- W4205909417 cites W2625133029 @default.
- W4205909417 cites W2772412867 @default.
- W4205909417 cites W2782522152 @default.
- W4205909417 cites W2785582092 @default.
- W4205909417 cites W2899101283 @default.
- W4205909417 cites W2903282641 @default.
- W4205909417 cites W2904800847 @default.
- W4205909417 cites W2907203011 @default.
- W4205909417 cites W2911978475 @default.
- W4205909417 cites W2912523171 @default.
- W4205909417 cites W2914983949 @default.
- W4205909417 cites W2940726923 @default.
- W4205909417 cites W2942138971 @default.
- W4205909417 cites W2946474676 @default.
- W4205909417 cites W3004042885 @default.
- W4205909417 cites W3033936853 @default.
- W4205909417 cites W3137262434 @default.
- W4205909417 doi "https://doi.org/10.1186/s40537-021-00530-x" @default.
- W4205909417 hasPublicationYear "2021" @default.
- W4205909417 type Work @default.
- W4205909417 citedByCount "2" @default.
- W4205909417 countsByYear W42059094172022 @default.
- W4205909417 countsByYear W42059094172023 @default.
- W4205909417 crossrefType "journal-article" @default.
- W4205909417 hasAuthorship W4205909417A5030501294 @default.
- W4205909417 hasAuthorship W4205909417A5039694404 @default.
- W4205909417 hasAuthorship W4205909417A5078315531 @default.
- W4205909417 hasAuthorship W4205909417A5085879637 @default.
- W4205909417 hasBestOaLocation W42059094171 @default.
- W4205909417 hasConcept C117220453 @default.
- W4205909417 hasConcept C119857082 @default.
- W4205909417 hasConcept C123201435 @default.
- W4205909417 hasConcept C124101348 @default.
- W4205909417 hasConcept C154945302 @default.
- W4205909417 hasConcept C2522767166 @default.
- W4205909417 hasConcept C2524010 @default.
- W4205909417 hasConcept C25343380 @default.
- W4205909417 hasConcept C2780009758 @default.
- W4205909417 hasConcept C2780719617 @default.
- W4205909417 hasConcept C33923547 @default.
- W4205909417 hasConcept C38652104 @default.
- W4205909417 hasConcept C41008148 @default.
- W4205909417 hasConcept C49937458 @default.
- W4205909417 hasConcept C75684735 @default.
- W4205909417 hasConcept C76178495 @default.
- W4205909417 hasConceptScore W4205909417C117220453 @default.
- W4205909417 hasConceptScore W4205909417C119857082 @default.
- W4205909417 hasConceptScore W4205909417C123201435 @default.
- W4205909417 hasConceptScore W4205909417C124101348 @default.
- W4205909417 hasConceptScore W4205909417C154945302 @default.
- W4205909417 hasConceptScore W4205909417C2522767166 @default.
- W4205909417 hasConceptScore W4205909417C2524010 @default.
- W4205909417 hasConceptScore W4205909417C25343380 @default.
- W4205909417 hasConceptScore W4205909417C2780009758 @default.
- W4205909417 hasConceptScore W4205909417C2780719617 @default.
- W4205909417 hasConceptScore W4205909417C33923547 @default.
- W4205909417 hasConceptScore W4205909417C38652104 @default.
- W4205909417 hasConceptScore W4205909417C41008148 @default.
- W4205909417 hasConceptScore W4205909417C49937458 @default.
- W4205909417 hasConceptScore W4205909417C75684735 @default.
- W4205909417 hasConceptScore W4205909417C76178495 @default.
- W4205909417 hasIssue "1" @default.
- W4205909417 hasLocation W42059094171 @default.
- W4205909417 hasLocation W42059094172 @default.
- W4205909417 hasLocation W42059094173 @default.
- W4205909417 hasOpenAccess W4205909417 @default.
- W4205909417 hasPrimaryLocation W42059094171 @default.