Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205926759> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4205926759 endingPage "2693" @default.
- W4205926759 startingPage "2685" @default.
- W4205926759 abstract "No AccessTechnical NotesInvestigation of Hysteresis Loop in the Starting Process of Supersonic CascadeShuying Zhang, Ling Zhou and Lucheng JiShuying ZhangBeijing Institute of Technology, 100081 Beijing, People’s Republic of China*Graduate Student, School of Aerospace Engineering; .Search for more papers by this author, Ling ZhouBeijing Institute of Technology, 100081 Beijing, People’s Republic of China†Associate Professor, School of Aerospace Engineering; (Corresponding Author).Search for more papers by this author and Lucheng JiTsinghua University, 100084 Beijing, People’s Republic of China‡Professor, Institute of Aero Engine; .Search for more papers by this authorPublished Online:11 Jan 2022https://doi.org/10.2514/1.J061232SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Kantrowitz A., “The Formation and Stability of Noemal Shock Waves in Channel Flows,” NACA TN 1225, 1947. Google Scholar[2] Kantrowitz A. and Donaldson C., “Preliminary Investigation of Supersonic Diffusers,” NACA ACR-L5D20, 1945. Google Scholar[3] Van Wie D. M., Kwok F. T. and Walsh R. F., “Starting Characteristics of Supersonic Inlets,” AIAA Paper 1996-2914, 1996. https://doi.org/10.2514/6.1996-2914 LinkGoogle Scholar[4] Tahir R. B., Molder S. and Timofeev E. V., “Unsteady Starting of High Mach Number Air Inlets-A CFD Study,” AIAA Paper 2003-5191, 2003. https://doi.org/10.2514/6.2003-5191 LinkGoogle Scholar[5] Molder S., Timofeev E. V. and Tahir R. B., “Flow Starting in High Compression Hypersonic Air Inlets by Mass Spillage,” AIAA Paper 2004-4130, 2004. https://doi.org/10.2514/6.2004-4130 Google Scholar[6] Najafiyazdi A., Tahir R., Timofeev E. V. and Molder S., “Analytical and Numerical Study of Flow Starting in Supersonic Inlets by Mass Spillage,” AIAA Paper 2007-5072, 2007. https://doi.org/10.2514/6.2007-5072 Google Scholar[7] Timofeev E. V., Tahir R. B. and Molder S., “On Recent Development Related to Flow Starting in Hypersonic Air Intakes,” AIAA Paper 2008-2512, 2008. https://doi.org/10.2514/6.2008-2512 Google Scholar[8] Graham R. C., Klapproth J. F. and Barina F. J., “Investigation of Off-Design Performance of Shock-in-Rotor Type Supersonic Blading,” NACA RM-E51C22, 1951. Google Scholar[9] Qiu M., “Investigation of Shock Organization in Axial Compressor Passages of high Pressure Ratio,” Ph.D. Thesis, Nanjing Univ. of Aeronautics and Astronautics, Nanjing, China, 2014. Google Scholar[10] Ning F. F., “Numerical Simulation of Internal Flow in Transonic Compressor Considering Real Geometric Complexity,” Ph.D. Dissertation, Beijing Univ. of Aeronautics and Astronautics, Beijing, 2002. Google Scholar[11] Ning F. F., “MAP: A CFD Package for Turbomachinery Flow Simulation and Aerodynamic Design Optimization,” ASME Paper GT2014-26515, 2014. https://doi.org/10.1115/gt2014-26515 Google Scholar[12] Edwards J. R., “A Low-Diffusion Flux Splitting Scheme for Navier-Stokes Calculations,” Computers and Fluids, Vol. 26, No. 6, 1997, pp. 635–659. https://doi.org/10.1016/S00-7930(97)00014-5 Google Scholar[13] Ju P. F. and Ning F. F., “Numerical Study of Near-Stall Flow Feature on Transonic Compressor,” Journal of Propulsion Technology, Vol. 37, No. 6, 2016, pp. 1055–1064. https://doi.org/10.13675/j.cnki.tjjs.2016.06.00 Google Scholar[14] Tweedt D. L., Schreiber H. A. and Starken H., “Experimental Investigation of the Performance of a Supersonic Compressor Cascade,” Journal of Turbomachinery, Vol. 110, No. 4, 1988, pp. 456–466. https://doi.org/10.1115/1.3262219 Google Scholar[15] Piovesan T., Magrini A. and Benini E., “Accurate 2-D Modelling of Transonic Compressor Cascade Aerodynamics,” Aerospace, Vol. 6, No. 5, 2019, pp. 57–76. https://doi.org/10.3390/aerospace6050057 CrossrefGoogle Scholar[16] Schreiber H. A. and Starken H., “An Investigation of a Strong Shock-Wave Turbulent Boundary Layer Interaction in a Supersonic Compressor Cascade,” Journal of Turbomachinery, Vol. 114, No. 3, 1992, pp. 494–503. https://doi.org/10.1115/1.2929170 CrossrefGoogle Scholar[17] Fleeter S., Holtman R. and Mcclure R. B., “Experimental Investigation of a Supersonic Compressor Cascade,” ARL TR-75-0208, Washington, D.C., 1975. Google Scholar[18] Jiang X., Qiu M. and Fan Z. L., “Effect of Supersonic Compressor Cascade Throat on Flow Pattern and Cascade Performance,” Acta Aeronautica et Astronautica Sinica, Vol. 38, No. 3, 2017, Paper 120308. https://doi.org/10.7527/S1000-6893.2016.0195 Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byAerodynamic Characteristics of Morphing Supersonic Cascade Under Low-Upstream-Mach-Number ConditionChenzhang Li, Tianyu Pan, Zhaoqi Yan, Mengzong Zheng, Qiushi Li and Earl H. Dowell23 December 2022 | AIAA Journal, Vol. 0, No. 0 What's Popular Volume 60, Number 4April 2022 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsComputational Fluid DynamicsFlow RegimesFluid DynamicsFluid MechanicsMagnetic PropertiesMaterial PropertiesMaterials and Structural MechanicsOblique Shock WaveShock WavesTurbulenceTurbulence Models KeywordsHysteresis LoopsAerodynamic SimulationCompressible FluidOblique ShockNumerical SimulationTurbulence ModelsCurved ShocksMach ReflectionStatic PressureTurbomachineryAcknowledgmentsThis work was supported by the National Natural Science Foundation of China (Grant No. 51976010) and the National Major Science and Technology Projects of China (2017-II-0006-0020, 2017-II-0001-0013, J2019-II-0003-0023). We sincerely thank Ning Fangfei, Beihang University, for providing computational fluid dynamics code MAP-S1.PDF Received1 September 2021Accepted2 December 2021Published online11 January 2022" @default.
- W4205926759 created "2022-01-26" @default.
- W4205926759 creator A5016033154 @default.
- W4205926759 creator A5034442018 @default.
- W4205926759 creator A5046557565 @default.
- W4205926759 date "2022-04-01" @default.
- W4205926759 modified "2023-10-17" @default.
- W4205926759 title "Investigation of Hysteresis Loop in the Starting Process of Supersonic Cascade" @default.
- W4205926759 cites W1990701413 @default.
- W4205926759 cites W2042150569 @default.
- W4205926759 cites W2106399869 @default.
- W4205926759 cites W2314761330 @default.
- W4205926759 cites W2317552795 @default.
- W4205926759 cites W2319052812 @default.
- W4205926759 cites W2329736375 @default.
- W4205926759 cites W2333639143 @default.
- W4205926759 cites W2945276739 @default.
- W4205926759 doi "https://doi.org/10.2514/1.j061232" @default.
- W4205926759 hasPublicationYear "2022" @default.
- W4205926759 type Work @default.
- W4205926759 citedByCount "1" @default.
- W4205926759 countsByYear W42059267592023 @default.
- W4205926759 crossrefType "journal-article" @default.
- W4205926759 hasAuthorship W4205926759A5016033154 @default.
- W4205926759 hasAuthorship W4205926759A5034442018 @default.
- W4205926759 hasAuthorship W4205926759A5046557565 @default.
- W4205926759 hasConcept C121332964 @default.
- W4205926759 hasConcept C127413603 @default.
- W4205926759 hasConcept C146978453 @default.
- W4205926759 hasConcept C165231844 @default.
- W4205926759 hasConcept C178802073 @default.
- W4205926759 hasConcept C205991772 @default.
- W4205926759 hasConceptScore W4205926759C121332964 @default.
- W4205926759 hasConceptScore W4205926759C127413603 @default.
- W4205926759 hasConceptScore W4205926759C146978453 @default.
- W4205926759 hasConceptScore W4205926759C165231844 @default.
- W4205926759 hasConceptScore W4205926759C178802073 @default.
- W4205926759 hasConceptScore W4205926759C205991772 @default.
- W4205926759 hasFunder F4320321001 @default.
- W4205926759 hasFunder F4320321125 @default.
- W4205926759 hasFunder F4320335960 @default.
- W4205926759 hasIssue "4" @default.
- W4205926759 hasLocation W42059267591 @default.
- W4205926759 hasOpenAccess W4205926759 @default.
- W4205926759 hasPrimaryLocation W42059267591 @default.
- W4205926759 hasRelatedWork W1493691314 @default.
- W4205926759 hasRelatedWork W1970618554 @default.
- W4205926759 hasRelatedWork W2086191015 @default.
- W4205926759 hasRelatedWork W2460388289 @default.
- W4205926759 hasRelatedWork W2746328650 @default.
- W4205926759 hasRelatedWork W2913746309 @default.
- W4205926759 hasRelatedWork W3188066198 @default.
- W4205926759 hasRelatedWork W616507991 @default.
- W4205926759 hasRelatedWork W763380685 @default.
- W4205926759 hasRelatedWork W843051120 @default.
- W4205926759 hasVolume "60" @default.
- W4205926759 isParatext "false" @default.
- W4205926759 isRetracted "false" @default.
- W4205926759 workType "article" @default.