Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205945573> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4205945573 endingPage "25" @default.
- W4205945573 startingPage "1" @default.
- W4205945573 abstract "Urban traffic flow forecasting is a critical issue in intelligent transportation systems. Due to the complexity and uncertainty of urban road conditions, how to capture the dynamic spatiotemporal correlation and make accurate predictions is very challenging. In most of existing works, urban road network is often modeled as a fixed graph based on local proximity. However, such modeling is not sufficient to describe the dynamics of the road network and capture the global contextual information. In this paper, we consider constructing the road network as a dynamic weighted graph through attention mechanism. Furthermore, we propose to seek both spatial neighbors and semantic neighbors to make more connections between road nodes. We propose a novel Spatiotemporal Adaptive Gated Graph Convolution Network ( STAG-GCN ) to predict traffic conditions for several time steps ahead. STAG-GCN mainly consists of two major components: (1) multivariate self-attention Temporal Convolution Network ( TCN ) is utilized to capture local and long-range temporal dependencies across recent, daily-periodic and weekly-periodic observations; (2) mix-hop AG-GCN extracts selective spatial and semantic dependencies within multi-layer stacking through adaptive graph gating mechanism and mix-hop propagation mechanism. The output of different components are weighted fused to generate the final prediction results. Extensive experiments on two real-world large scale urban traffic dataset have verified the effectiveness, and the multi-step forecasting performance of our proposed models outperforms the state-of-the-art baselines." @default.
- W4205945573 created "2022-01-26" @default.
- W4205945573 creator A5034483183 @default.
- W4205945573 creator A5048486573 @default.
- W4205945573 creator A5056317549 @default.
- W4205945573 creator A5060517125 @default.
- W4205945573 creator A5085791658 @default.
- W4205945573 creator A5087534120 @default.
- W4205945573 date "2022-01-05" @default.
- W4205945573 modified "2023-09-29" @default.
- W4205945573 title "Make More Connections: Urban Traffic Flow Forecasting with Spatiotemporal Adaptive Gated Graph Convolution Network" @default.
- W4205945573 cites W1982978808 @default.
- W4205945573 cites W2012051283 @default.
- W4205945573 cites W2069929199 @default.
- W4205945573 cites W2131739422 @default.
- W4205945573 cites W2157331557 @default.
- W4205945573 cites W2565330852 @default.
- W4205945573 cites W2579495707 @default.
- W4205945573 cites W2593182953 @default.
- W4205945573 cites W2613331518 @default.
- W4205945573 cites W2624190409 @default.
- W4205945573 cites W2624924877 @default.
- W4205945573 cites W2731035550 @default.
- W4205945573 cites W2767404761 @default.
- W4205945573 cites W2891280833 @default.
- W4205945573 cites W2903871660 @default.
- W4205945573 cites W2905442144 @default.
- W4205945573 cites W2912407321 @default.
- W4205945573 cites W2935726879 @default.
- W4205945573 cites W2946782700 @default.
- W4205945573 cites W2949732208 @default.
- W4205945573 cites W2962790412 @default.
- W4205945573 cites W2962975498 @default.
- W4205945573 cites W2968911474 @default.
- W4205945573 cites W3012562343 @default.
- W4205945573 cites W3027664001 @default.
- W4205945573 cites W3043790937 @default.
- W4205945573 cites W3080253043 @default.
- W4205945573 cites W3093639344 @default.
- W4205945573 cites W3094009742 @default.
- W4205945573 cites W3094588037 @default.
- W4205945573 cites W3105136071 @default.
- W4205945573 cites W3108550173 @default.
- W4205945573 doi "https://doi.org/10.1145/3488902" @default.
- W4205945573 hasPublicationYear "2022" @default.
- W4205945573 type Work @default.
- W4205945573 citedByCount "6" @default.
- W4205945573 countsByYear W42059455732022 @default.
- W4205945573 countsByYear W42059455732023 @default.
- W4205945573 crossrefType "journal-article" @default.
- W4205945573 hasAuthorship W4205945573A5034483183 @default.
- W4205945573 hasAuthorship W4205945573A5048486573 @default.
- W4205945573 hasAuthorship W4205945573A5056317549 @default.
- W4205945573 hasAuthorship W4205945573A5060517125 @default.
- W4205945573 hasAuthorship W4205945573A5085791658 @default.
- W4205945573 hasAuthorship W4205945573A5087534120 @default.
- W4205945573 hasConcept C124101348 @default.
- W4205945573 hasConcept C132525143 @default.
- W4205945573 hasConcept C154945302 @default.
- W4205945573 hasConcept C41008148 @default.
- W4205945573 hasConcept C45347329 @default.
- W4205945573 hasConcept C50644808 @default.
- W4205945573 hasConcept C80444323 @default.
- W4205945573 hasConceptScore W4205945573C124101348 @default.
- W4205945573 hasConceptScore W4205945573C132525143 @default.
- W4205945573 hasConceptScore W4205945573C154945302 @default.
- W4205945573 hasConceptScore W4205945573C41008148 @default.
- W4205945573 hasConceptScore W4205945573C45347329 @default.
- W4205945573 hasConceptScore W4205945573C50644808 @default.
- W4205945573 hasConceptScore W4205945573C80444323 @default.
- W4205945573 hasFunder F4320321001 @default.
- W4205945573 hasFunder F4320335777 @default.
- W4205945573 hasIssue "2" @default.
- W4205945573 hasLocation W42059455731 @default.
- W4205945573 hasOpenAccess W4205945573 @default.
- W4205945573 hasPrimaryLocation W42059455731 @default.
- W4205945573 hasRelatedWork W1571903748 @default.
- W4205945573 hasRelatedWork W2068395868 @default.
- W4205945573 hasRelatedWork W2347219288 @default.
- W4205945573 hasRelatedWork W2366221835 @default.
- W4205945573 hasRelatedWork W2391817034 @default.
- W4205945573 hasRelatedWork W2810384904 @default.
- W4205945573 hasRelatedWork W3045843715 @default.
- W4205945573 hasRelatedWork W3193561696 @default.
- W4205945573 hasRelatedWork W3205013194 @default.
- W4205945573 hasRelatedWork W4251415830 @default.
- W4205945573 hasVolume "13" @default.
- W4205945573 isParatext "false" @default.
- W4205945573 isRetracted "false" @default.
- W4205945573 workType "article" @default.