Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205966472> ?p ?o ?g. }
- W4205966472 endingPage "106015" @default.
- W4205966472 startingPage "106015" @default.
- W4205966472 abstract "External factors including moisture content negatively affect the prediction accuracy of soil organic carbon (SOC) using on-line visible and near-infrared (vis-NIR) spectroscopy. This study compared the performances of four algorithms to remove the moisture content effect [direct standardization (DS), piecewise direct standardization (PDS), external parameter orthogonalization (EPO), and orthogonal signal correction (OSC)] against non-corrected (NC) spectral models developed with partial least squares regression (PLSR), support vector machine (SVM), random forest (RF), and M5Rules regression. An on-line soil sensing platform coupled with a vis-NIR spectrophotometer (305–1700 nm) was used to scan twelve agricultural fields in Belgium and France. A total of 372 soil samples collected during the on-line measurement were divided into a calibration (260) and a prediction (112) dataset, using the Kennard-Stone algorithm. The latter set together with identical laboratory-measured 112 dry soil spectra formed a transfer dataset to develop EPO, DS and PDS correction matrices. Results showed that models after EPO, PDS and OSC corrections resulted in improved accuracy [coefficient of determination (R2) = 0.60–0.82, root mean square error (RMSE) = 16.1–5.7 g kg−1)], compared to the NC models (R2 = 0.58–0.73, RMSE = 16.5–6.8 g kg−1), whereas the DS (R2 = −0.10 to 0.26, RMSE = 26.8–21.9 g kg−1) provided deteriorated prediction accuracy. The EPO and OSC models provided better prediction accuracy than that of the PDS corrected models. The OSC-M5Rules (R2 = 0.82, RMSE = 5.7 g kg−1) obtained the highest accuracy followed by EPO-M5Rules (R2 = 0.74, RMSE = 6.7 g kg−1) and NC-M5Rules (R2 = 0.73, RMSE = 6.8 g kg−1), which outperformed all PLSR, RF and SVM models. Therefore, on-line vis-NIR spectra should be corrected with the OSC algorithm before calibrating a machine learning model for accurate prediction of SOC." @default.
- W4205966472 created "2022-01-26" @default.
- W4205966472 creator A5075089780 @default.
- W4205966472 creator A5089753073 @default.
- W4205966472 date "2022-04-01" @default.
- W4205966472 modified "2023-09-30" @default.
- W4205966472 title "Removal of external influences from on-line vis-NIR spectra for predicting soil organic carbon using machine learning" @default.
- W4205966472 cites W1592341820 @default.
- W4205966472 cites W1671614046 @default.
- W4205966472 cites W1687167322 @default.
- W4205966472 cites W1809227307 @default.
- W4205966472 cites W1831050183 @default.
- W4205966472 cites W1877350092 @default.
- W4205966472 cites W1966947115 @default.
- W4205966472 cites W1969839347 @default.
- W4205966472 cites W1973273412 @default.
- W4205966472 cites W1977497970 @default.
- W4205966472 cites W1985518702 @default.
- W4205966472 cites W2000640518 @default.
- W4205966472 cites W2002190180 @default.
- W4205966472 cites W2003756234 @default.
- W4205966472 cites W2008102716 @default.
- W4205966472 cites W2009118062 @default.
- W4205966472 cites W2010212234 @default.
- W4205966472 cites W2012358846 @default.
- W4205966472 cites W2016090370 @default.
- W4205966472 cites W2017422910 @default.
- W4205966472 cites W2026469743 @default.
- W4205966472 cites W2033275656 @default.
- W4205966472 cites W2042810309 @default.
- W4205966472 cites W2052903566 @default.
- W4205966472 cites W2071188448 @default.
- W4205966472 cites W2073503722 @default.
- W4205966472 cites W2073858026 @default.
- W4205966472 cites W2090785325 @default.
- W4205966472 cites W2091015178 @default.
- W4205966472 cites W2098722265 @default.
- W4205966472 cites W2109606373 @default.
- W4205966472 cites W2115823300 @default.
- W4205966472 cites W2123527588 @default.
- W4205966472 cites W2225651437 @default.
- W4205966472 cites W2339421059 @default.
- W4205966472 cites W2547616890 @default.
- W4205966472 cites W2594206203 @default.
- W4205966472 cites W2607318407 @default.
- W4205966472 cites W2740707706 @default.
- W4205966472 cites W2766300505 @default.
- W4205966472 cites W2769356378 @default.
- W4205966472 cites W2792709023 @default.
- W4205966472 cites W2896031221 @default.
- W4205966472 cites W2908031888 @default.
- W4205966472 cites W2911964244 @default.
- W4205966472 cites W2935477365 @default.
- W4205966472 cites W2989837018 @default.
- W4205966472 cites W3006440708 @default.
- W4205966472 cites W3018417665 @default.
- W4205966472 cites W3042567106 @default.
- W4205966472 cites W3088085334 @default.
- W4205966472 cites W4239944110 @default.
- W4205966472 cites W581156175 @default.
- W4205966472 doi "https://doi.org/10.1016/j.catena.2022.106015" @default.
- W4205966472 hasPublicationYear "2022" @default.
- W4205966472 type Work @default.
- W4205966472 citedByCount "14" @default.
- W4205966472 countsByYear W42059664722022 @default.
- W4205966472 countsByYear W42059664722023 @default.
- W4205966472 crossrefType "journal-article" @default.
- W4205966472 hasAuthorship W4205966472A5075089780 @default.
- W4205966472 hasAuthorship W4205966472A5089753073 @default.
- W4205966472 hasConcept C105795698 @default.
- W4205966472 hasConcept C107872376 @default.
- W4205966472 hasConcept C113196181 @default.
- W4205966472 hasConcept C12267149 @default.
- W4205966472 hasConcept C127413603 @default.
- W4205966472 hasConcept C128990827 @default.
- W4205966472 hasConcept C139945424 @default.
- W4205966472 hasConcept C154945302 @default.
- W4205966472 hasConcept C159390177 @default.
- W4205966472 hasConcept C159750122 @default.
- W4205966472 hasConcept C165838908 @default.
- W4205966472 hasConcept C169258074 @default.
- W4205966472 hasConcept C185592680 @default.
- W4205966472 hasConcept C187320778 @default.
- W4205966472 hasConcept C22354355 @default.
- W4205966472 hasConcept C24939127 @default.
- W4205966472 hasConcept C2780092901 @default.
- W4205966472 hasConcept C33923547 @default.
- W4205966472 hasConcept C39432304 @default.
- W4205966472 hasConcept C39464130 @default.
- W4205966472 hasConcept C41008148 @default.
- W4205966472 hasConcept C48921125 @default.
- W4205966472 hasConceptScore W4205966472C105795698 @default.
- W4205966472 hasConceptScore W4205966472C107872376 @default.
- W4205966472 hasConceptScore W4205966472C113196181 @default.
- W4205966472 hasConceptScore W4205966472C12267149 @default.
- W4205966472 hasConceptScore W4205966472C127413603 @default.
- W4205966472 hasConceptScore W4205966472C128990827 @default.
- W4205966472 hasConceptScore W4205966472C139945424 @default.