Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206012526> ?p ?o ?g. }
- W4206012526 endingPage "6303" @default.
- W4206012526 startingPage "6286" @default.
- W4206012526 abstract "All the educational organizations mainly aim at elevating the academic performance of students for improving the overall quality of education. In this direction, Educational Data Mining (EDM) is a rapidly trending research area that utilizes the essence of Data Mining (DM) concepts to help academic institutions figure out useful information on the Student Satisfaction Level (SSL) with the Online Learning process (OL) during COVID-19 lock-down. Different practices have been tried with EDM to predict students’ behaviors to reach the best educational settings. Therefore, Feature Selection (FS) is typically employed to find the most relevant subset of features with minimum cardinality. As the predictive accuracy of a satisfaction model is significantly influenced by the FS process, the effectiveness of the SSL model is elaborately studied in this paper in connection with FS techniques. In this connection, a dataset was first collected online via a questionnaire of student reviews on OL courses. Using this datatset, the performance of wrapper FS techniques in DM and classification algorithms was analyzed in terms of fitness values. Ultimately, the goodness of subsets with different cardinalities is evaluated in terms of prediction accuracy and number of selected features by measuring the quality of 11 wrapper-based FS algorithms and the <inline-formula> <tex-math notation=LaTeX>$k$ </tex-math></inline-formula>-Nearest Neighbor (<inline-formula> <tex-math notation=LaTeX>$k$ </tex-math></inline-formula>-NN) and Support Vector Machine (SVM) as base-line classifiers. Based on the experiments, the optimal dimensionality of the feature subset was revealed, as well as the best method. The findings of the present study evidently support the well-known conjunction of the existence of minimum number of features and an increase in predictive accuracy. It is remarkable the relevancy of FS for high-accuracy SSL prediction, as the relevant set of features can effectively assist in deriving constructive educational strategies. Our study contributes a feature size reduction of up to 80% along with up to 100% classification accuracy on the adopted real-time dataset." @default.
- W4206012526 created "2022-01-25" @default.
- W4206012526 creator A5017287168 @default.
- W4206012526 creator A5030327399 @default.
- W4206012526 creator A5050092213 @default.
- W4206012526 creator A5059775848 @default.
- W4206012526 date "2022-01-01" @default.
- W4206012526 modified "2023-10-13" @default.
- W4206012526 title "An Efficient Data Mining Technique for Assessing Satisfaction Level With Online Learning for Higher Education Students During the COVID-19" @default.
- W4206012526 cites W1970594742 @default.
- W4206012526 cites W1975664724 @default.
- W4206012526 cites W1994451802 @default.
- W4206012526 cites W2000621750 @default.
- W4206012526 cites W2001979953 @default.
- W4206012526 cites W2014024248 @default.
- W4206012526 cites W2019457794 @default.
- W4206012526 cites W2053410046 @default.
- W4206012526 cites W2072292529 @default.
- W4206012526 cites W2094397139 @default.
- W4206012526 cites W2109364787 @default.
- W4206012526 cites W2117688906 @default.
- W4206012526 cites W2121302072 @default.
- W4206012526 cites W2122111042 @default.
- W4206012526 cites W2131391419 @default.
- W4206012526 cites W2153030642 @default.
- W4206012526 cites W2167006443 @default.
- W4206012526 cites W2237685256 @default.
- W4206012526 cites W2260602653 @default.
- W4206012526 cites W2289488006 @default.
- W4206012526 cites W2290228145 @default.
- W4206012526 cites W2290883490 @default.
- W4206012526 cites W2322504701 @default.
- W4206012526 cites W2343420905 @default.
- W4206012526 cites W2411885377 @default.
- W4206012526 cites W2461302873 @default.
- W4206012526 cites W2531479340 @default.
- W4206012526 cites W2569154995 @default.
- W4206012526 cites W2572386335 @default.
- W4206012526 cites W2585392941 @default.
- W4206012526 cites W2593314755 @default.
- W4206012526 cites W2593842564 @default.
- W4206012526 cites W2735880238 @default.
- W4206012526 cites W2781012528 @default.
- W4206012526 cites W2800276980 @default.
- W4206012526 cites W2802789299 @default.
- W4206012526 cites W2810612184 @default.
- W4206012526 cites W2885770227 @default.
- W4206012526 cites W2886972084 @default.
- W4206012526 cites W2889545660 @default.
- W4206012526 cites W2894349568 @default.
- W4206012526 cites W2908600212 @default.
- W4206012526 cites W2914128779 @default.
- W4206012526 cites W2914717758 @default.
- W4206012526 cites W2919979744 @default.
- W4206012526 cites W2953267417 @default.
- W4206012526 cites W2962182762 @default.
- W4206012526 cites W2963103847 @default.
- W4206012526 cites W2974661002 @default.
- W4206012526 cites W2977355190 @default.
- W4206012526 cites W2983505720 @default.
- W4206012526 cites W2986805221 @default.
- W4206012526 cites W2991234881 @default.
- W4206012526 cites W3003465021 @default.
- W4206012526 cites W3004565805 @default.
- W4206012526 cites W3012753372 @default.
- W4206012526 cites W3013376481 @default.
- W4206012526 cites W3014723334 @default.
- W4206012526 cites W3015579669 @default.
- W4206012526 cites W3015931679 @default.
- W4206012526 cites W3023438672 @default.
- W4206012526 cites W3023863810 @default.
- W4206012526 cites W3029669212 @default.
- W4206012526 cites W3034751247 @default.
- W4206012526 cites W3036075185 @default.
- W4206012526 cites W3046918201 @default.
- W4206012526 cites W3080782899 @default.
- W4206012526 cites W3090867153 @default.
- W4206012526 cites W3104632059 @default.
- W4206012526 cites W3106473553 @default.
- W4206012526 cites W3127206013 @default.
- W4206012526 cites W3127830721 @default.
- W4206012526 cites W3135356048 @default.
- W4206012526 cites W3154556092 @default.
- W4206012526 cites W3157787344 @default.
- W4206012526 cites W752968074 @default.
- W4206012526 doi "https://doi.org/10.1109/access.2022.3143035" @default.
- W4206012526 hasPublicationYear "2022" @default.
- W4206012526 type Work @default.
- W4206012526 citedByCount "15" @default.
- W4206012526 countsByYear W42060125262022 @default.
- W4206012526 countsByYear W42060125262023 @default.
- W4206012526 crossrefType "journal-article" @default.
- W4206012526 hasAuthorship W4206012526A5017287168 @default.
- W4206012526 hasAuthorship W4206012526A5030327399 @default.
- W4206012526 hasAuthorship W4206012526A5050092213 @default.
- W4206012526 hasAuthorship W4206012526A5059775848 @default.
- W4206012526 hasBestOaLocation W42060125261 @default.
- W4206012526 hasConcept C111472728 @default.