Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206044543> ?p ?o ?g. }
- W4206044543 endingPage "10272" @default.
- W4206044543 startingPage "10259" @default.
- W4206044543 abstract "Simultaneous localization and mapping (SLAM) is considered as a key technique in augmented reality (AR), robotics and unmanned driving. In the field of SLAM, solutions based on monocular sensors have gradually become important due to their ability to recognize more environmental information with simple structures and low costs. Feature-based ORB-SLAM is popular in many applications, but it has many limitations in complex indoor scenes. Firstly, camera pose estimation based on monocular images is greatly affected by the environment; secondly, monocular images lack scale information and cannot be used to obtain image depth information; thirdly, monocular based SLAM builds a fused map of feature points that lacks semantic information, which is incomprehensible for machine. To solve the aforementioned issues, this paper proposes an SDF-SLAM model based on deep learning, which can perform camera pose estimation in a wider indoor environment and can also perform depth estimation and semantic segmentation on monocular images to obtain an understandable three-dimensional map. SDF-SLAM is tested and verified using a CPU platform and two sets of indoor scenes. The results show that the average accuracy of the predicted point cloud coordinates reaches 90%, and the average accuracy of the semantic labels reaches 67%. Moreover, compared with the state-of-the-art SLAM frameworks, such as ORB-SLAM, LSD-SLAM, and CNN-SLAM, the absolute error of the camera trajectory on indoor data with more feature points is reduced from 0.436 m, 0.495 m, and 0.243 m to 0.037 m, respectively. On indoor data with fewer feature points, they decrease from 1.826 m, 1.206 m, and 0.264 m to 0.124 m, respectively." @default.
- W4206044543 created "2022-01-25" @default.
- W4206044543 creator A5006276866 @default.
- W4206044543 creator A5012259346 @default.
- W4206044543 creator A5014708668 @default.
- W4206044543 creator A5034840700 @default.
- W4206044543 creator A5036704783 @default.
- W4206044543 creator A5058698662 @default.
- W4206044543 date "2022-01-01" @default.
- W4206044543 modified "2023-10-18" @default.
- W4206044543 title "SDF-SLAM: A Deep Learning Based Highly Accurate SLAM Using Monocular Camera Aiming at Indoor Map Reconstruction With Semantic and Depth Fusion" @default.
- W4206044543 cites W1913661415 @default.
- W4206044543 cites W2021851106 @default.
- W4206044543 cites W2117228865 @default.
- W4206044543 cites W2151103935 @default.
- W4206044543 cites W2151290401 @default.
- W4206044543 cites W2168015472 @default.
- W4206044543 cites W2200124539 @default.
- W4206044543 cites W2303655915 @default.
- W4206044543 cites W2318525498 @default.
- W4206044543 cites W2536150963 @default.
- W4206044543 cites W2560609797 @default.
- W4206044543 cites W2581072828 @default.
- W4206044543 cites W2584903551 @default.
- W4206044543 cites W2606794968 @default.
- W4206044543 cites W2766927308 @default.
- W4206044543 cites W2963591054 @default.
- W4206044543 cites W2980467688 @default.
- W4206044543 cites W2996333182 @default.
- W4206044543 cites W3013299216 @default.
- W4206044543 cites W3018056433 @default.
- W4206044543 cites W3024627041 @default.
- W4206044543 cites W3036323290 @default.
- W4206044543 cites W3103648783 @default.
- W4206044543 cites W612478963 @default.
- W4206044543 cites W764651262 @default.
- W4206044543 doi "https://doi.org/10.1109/access.2022.3144845" @default.
- W4206044543 hasPublicationYear "2022" @default.
- W4206044543 type Work @default.
- W4206044543 citedByCount "2" @default.
- W4206044543 countsByYear W42060445432022 @default.
- W4206044543 countsByYear W42060445432023 @default.
- W4206044543 crossrefType "journal-article" @default.
- W4206044543 hasAuthorship W4206044543A5006276866 @default.
- W4206044543 hasAuthorship W4206044543A5012259346 @default.
- W4206044543 hasAuthorship W4206044543A5014708668 @default.
- W4206044543 hasAuthorship W4206044543A5034840700 @default.
- W4206044543 hasAuthorship W4206044543A5036704783 @default.
- W4206044543 hasAuthorship W4206044543A5058698662 @default.
- W4206044543 hasBestOaLocation W42060445431 @default.
- W4206044543 hasConcept C108260229 @default.
- W4206044543 hasConcept C108583219 @default.
- W4206044543 hasConcept C115961682 @default.
- W4206044543 hasConcept C121332964 @default.
- W4206044543 hasConcept C1276947 @default.
- W4206044543 hasConcept C131979681 @default.
- W4206044543 hasConcept C13662910 @default.
- W4206044543 hasConcept C138885662 @default.
- W4206044543 hasConcept C154945302 @default.
- W4206044543 hasConcept C158829959 @default.
- W4206044543 hasConcept C19966478 @default.
- W4206044543 hasConcept C2776401178 @default.
- W4206044543 hasConcept C31972630 @default.
- W4206044543 hasConcept C41008148 @default.
- W4206044543 hasConcept C41895202 @default.
- W4206044543 hasConcept C52102323 @default.
- W4206044543 hasConcept C65909025 @default.
- W4206044543 hasConcept C86369673 @default.
- W4206044543 hasConcept C90509273 @default.
- W4206044543 hasConceptScore W4206044543C108260229 @default.
- W4206044543 hasConceptScore W4206044543C108583219 @default.
- W4206044543 hasConceptScore W4206044543C115961682 @default.
- W4206044543 hasConceptScore W4206044543C121332964 @default.
- W4206044543 hasConceptScore W4206044543C1276947 @default.
- W4206044543 hasConceptScore W4206044543C131979681 @default.
- W4206044543 hasConceptScore W4206044543C13662910 @default.
- W4206044543 hasConceptScore W4206044543C138885662 @default.
- W4206044543 hasConceptScore W4206044543C154945302 @default.
- W4206044543 hasConceptScore W4206044543C158829959 @default.
- W4206044543 hasConceptScore W4206044543C19966478 @default.
- W4206044543 hasConceptScore W4206044543C2776401178 @default.
- W4206044543 hasConceptScore W4206044543C31972630 @default.
- W4206044543 hasConceptScore W4206044543C41008148 @default.
- W4206044543 hasConceptScore W4206044543C41895202 @default.
- W4206044543 hasConceptScore W4206044543C52102323 @default.
- W4206044543 hasConceptScore W4206044543C65909025 @default.
- W4206044543 hasConceptScore W4206044543C86369673 @default.
- W4206044543 hasConceptScore W4206044543C90509273 @default.
- W4206044543 hasFunder F4320321001 @default.
- W4206044543 hasFunder F4320322857 @default.
- W4206044543 hasLocation W42060445431 @default.
- W4206044543 hasLocation W42060445432 @default.
- W4206044543 hasOpenAccess W4206044543 @default.
- W4206044543 hasPrimaryLocation W42060445431 @default.
- W4206044543 hasRelatedWork W197633916 @default.
- W4206044543 hasRelatedWork W2031672365 @default.
- W4206044543 hasRelatedWork W2066600100 @default.
- W4206044543 hasRelatedWork W2127600839 @default.