Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206047463> ?p ?o ?g. }
- W4206047463 endingPage "284" @default.
- W4206047463 startingPage "267" @default.
- W4206047463 abstract "Free Access References John L. Woodward, John L. WoodwardSearch for more papers by this author Book Author(s):John L. Woodward, John L. WoodwardSearch for more papers by this author First published: 01 July 1999 https://doi.org/10.1002/9780470935361.refs AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat REFERENCES Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, U.S. Dept. of Commerce, National Bureau of Standards, Applied Mathematics Series 55, U. S. Government Printing Office, Washington, DC, Nov. 1970. Google Scholar Alix, P, C., Kobert and Bigot, J-P., “ Loss of containment—experimental validation of two-phase critical flow models against water, R11, and methanol,” 9th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, Barcelona, Spain, May 4–7, 1998, pp. 976– 986. Google Scholar American Institute of Chemical Engineers (AIChE), Dow's Fire and Explosion Index Hazard Classification Guide, 7th ed. American Institute of Chemical Engineers, New York, 1994. Google Scholar AIChE, Dow's Chemical Exposure Index Guide, 1st ed. American Institute of Chemical Engineers, New York, 1994. Google Scholar American Petroleum Institute (API), “ Surface Roughness Effects on Heavier-Than-Air Gas Diffusion,” API Publication No. 4459, Oct. 1987. Google Scholar Andrews, J., R. Smith, and Gregory, J., “Procedure to calculate the explosion frequency for a module on an offshore platform,” Trans. I Chem. E., 72, Part B, pp. 69– 82, 1994. CASWeb of Science®Google Scholar API, “ Effect of Homogeneous and Heterogeneous Surface Roughness on Heavier-Than-Air Gas Dispersion,” API Publication No. 4491, March 1989. Google Scholar API, “Hazard response modeling uncertainty (a quantitative method),” Vol. II, “Evaluation of commonly used hazardous gas dispersion models,” API Publication No. 4546, Oct. 1992. Google Scholar ASTM (American Society for Testing and Materials), “Significance of Tests for Petroleum Products,” Special Technical Publication 7C, K. Boldt and B. R. Hall, eds., West Conshohocken, PA, 1977, pp. 35– 36. Google Scholar Auer, A. H. Jr., “Correlation of land use and cover with meteorological anomalies,” J. Applied Meteorology, 17, 636– 643, 1978. CrossrefWeb of Science®Google Scholar Baines, W. D., and Turner, J. S., “Turbulent buoyant convection from a source in a confined region,” J. Fluid Mech., 37, 51– 80, 1967. CrossrefWeb of Science®Google Scholar Baker, Q. A., Doolittle, C. M., Fitzgerald, G. A., and Tang, M. J., “ Recent developments in the Baker–Strehlow VCE analysis methodology,” 31st Loss Prevention Symposium, Houston, TX, AIChE, March 9–13, 1997, Paper 42f. Google Scholar Baker, Q. A., Tang, M. J., Scheier, E., and Silva, G. J., “ Vapor cloud explosion analysis,” AIChE 28th Annual Loss Prevention Symposium, Houston, TX, April 17–21, 1994. Google Scholar Baker, W. E., Cox, P. A., Westine, P. S., Culesz, J. J., and Strelow, R. A., Explosion Hazards and Evaluation. Elsevier, Amsterdam, 1983. Google Scholar Baker, W. E., “Explosions in Air,” Wilfred Baker Engineering, San Antonio, TX, 1973, pp. 54– 64, 154. Google Scholar Bartknecht, W., Explosionschutz: Grundlagen und Anwendung, Springer-Verlag, Berlin, 1993. CrossrefGoogle Scholar Birch, A. D., Brown, D. R., and Dodson, M. G., Eighteenth Symposium (International) on Combustion, The Combustion Institute, 1981. Google Scholar Birch, A. D., Brown, D. R. Dodson, M.G., and Swaffield, F., “The structure and concentration decay of high pressure jets of natural gas,” Combust. Sci., and Tech., 36, 249, 1984. CrossrefCASWeb of Science®Google Scholar Birch, A. D., Hughes, D. J., and Swaffield, F., “Velocity decay of high pressure jets,” Combust. Sci., and Tech., 52, 161– 171, 1987. CrossrefCASWeb of Science®Google Scholar Birch, A. D., Brown, D. R., Fairweather, M., and Hargrave, G. K., “An experimental study of a turbulent natural gas jet in a cross-flow,” Combust. Sci., and Tech., 66, 217– 232, 1989. CrossrefCASWeb of Science®Google Scholar Birtwisle, J., Personal communication, 1999. Google Scholar Bjerketvedt, D., Bakke, J. R., and van Wingerden, K., “ Gas Explosion Handbook.” Christian Michelsen Research. CMR-93-A25034, 1993. Google Scholar Blockley, D. I., and Henderson, J. R., Proc. Inst. Civ. Eng., Part 1, 68, 719, Nov. 1980. CrossrefWeb of Science®Google Scholar Bolk, J. W., “ Influence of Hydrodynamics on the Upper Explosion Limit of Ethene–Air–Nitrogen Mixtures,” Ph.D. Dissertation, The University of Twente, The Netherlands, 1998. Google Scholar Bond, J., Flammability Characteristics of Chemicals and Products, Butterworth-Heinemann, London, 1991, pp. 71– 127. Web of Science®Google Scholar Bowen, P. J., and Shirvill, L. C., “Combustion hazaards posed by the pressurized atomization of high-flashpoint liquids,” J. Loss Prev. Process Ind., 7 (3) 233– 241, 1994. CrossrefWeb of Science®Google Scholar Bragg, S. L., “Effect of compressibility on the discharge coefficient of orifices and convergent nozzles,” J Mech. Eng. Sci., 2, 35– 44, 1960. CrossrefGoogle Scholar Britter, R. E., “ Special Topics on Dispersion of Dense Gases,” Report on Contract Number 1200/01.01, Research and Laboratory Services Div., Health & Safety Executive, Sheffield, UK, 1982. Google Scholar Britter, R. E., and McQuaid, J., “ Workbook on the Dispersion of Dense Gasses,” HSE Contract Research Report No. 17/1988, Health & Safety Executive, Sheffield, UK, 1988. Google Scholar Britton, L. G., “ Measurement of ignition energy for safety application,” AIChE Loss Prevention Symposium No. 25, 1991. Google Scholar Brown, R., York, J. L., “Sprays formed by flashing liquid jets,” AIChE Journal, 8, 149– 153, 1962 Google Scholar Bruderer, R. E., “ Ignition capabilities of hot surfaces and mechanically generated sparks in flammable gas and dust/air mixtures,” Paper 51d, AIChE Summer National Meeting, Minneapolis, MN, August 16–19, 1987. Google Scholar Burgoyne, J. H., “ The flammability of mists and sprays,” Second Symposium on Chemical Process Hazards, I Chem E.5, 1963, pp 1–. Google Scholar Bushnell, D. M., and Gooderum, P. B., “Atomization of superheated water jets at low ambient temperatures,” J. Spacecraft & Rockets, 5, 231– 232, February 1968. CrossrefWeb of Science®Google Scholar Businger, J.A., Wyngaard, J.C., Izumi, Y. and Bradley, E.F., “Flux-Profile Relationships in the Atmosphere Surface Layer,” J Atmos Sci., 28, 181– 189, March 1971. CrossrefWeb of Science®Google Scholar Cardillo, P., “Flammability of gas–powder hybrid systems,” Igegneria della Sicurezza e della Prevenzione, 11, (1), 12– 22, Jan. 1980. Google Scholar Caulfield, M., Cleaver, R. P. Cook, D. K., and Fairweather, M., “An integral model of turbulent jets in a cross-flow. Part 1-gas dispersion,” Trans IChemE, 71, Part B, 235– 242, 1993. CASWeb of Science®Google Scholar CCPS (Center for Chemical Process Safety), Concentration Fluctuations and Averaging Time in Vapor Clouds, AIChE, New York, 1995. Google Scholar CCPS, Guidelines for Chemical Process Quantitative Risk Analysis, AIChE, New York, 1989. Google Scholar CCPS, Guidelines for Chemical Transportation Risk Analysis, AIChE, New York, ISBN 0-8169-0629-7, 382 pp., 1995. Google Scholar CCPS. Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs, AIChE, New York., New York, ISBN 0-8169-0474-X, 387 pp., 1994. Google Scholar CCPS, Guidelines for Evaluating Process Plant Buildings for External Explosions and Fires, AIChE, New York, 1996. Google Scholar CCPS, Guidelines for Hazard Evaluation Procedures, 2nd Edition with Worked Examples, AIChE, New York, 1992. Google Scholar CCPS, Guidelines for Investigating Chemical Process Incidents, AIChE, New York, 1992. Google Scholar CCPS, Guidelines for Use of Vapor Cloud Dispersion Models, 2nd ed., AIChE, New York, 1996. Google Scholar CCPS, Guidelines for Postrelease Mitigation Technology, AIChE, New York, 1997. Google Scholar CCPS, RELEASE: A Model with Data to Predict Aerosol Rainout in Accidental Releases, AIChE, New York, 1998. Google Scholar CCPS, Understanding Atmospheric Dispersion of Accidental Releases, AIChE, New York, 1995. Google Scholar CERC (Cambridge Environmental Research Consultants), “ GASTAR dense gas dispersion model version 2.2 user's guide,” Cambridge, UK, 1990. Google Scholar Chan, S. T., “ FEM3A—A finite element model for the simulation of gas transport and dispersion: User's manual,” LLNL report UCRL-21043, April 1988. Google Scholar Checkel, M. D., Ting, D. S. K., and Bushe, W. K., J. Loss Prev. Process Ind., 8, 215, 1995. CrossrefWeb of Science®Google Scholar Cheney, W., and Kincaid, D., Numerical Mathematics and Computation, Brooks/Cole Publ. Co., 1980, pp. 41– 53. Google Scholar Chisholm, D., Two-Phase Flow in Pipelines and Heat Exchangers, George Godwin, Longman House, Burnt Mill, Harlow, Essex, England, 1983, p. 205. Google Scholar Claessen, G. A., Vliegen, E. J. G., Joosten, G. E. H., and Geersen, T. M., “ Flammability characteristics of natural gases in air at elevated pressures and temperatures,” Proc. 5th Int. Symp. Loss Prevention and Safety Promotion in the Process Industries, Cannes, France, 1986. Google Scholar Clay, G.A., Fitzpatrick, R. D., Hurst, N. W., Carter, D. A., and Crossthwaite, P. J., “Risk assessment for installations where liquefied petroleum gas (LPG) is stored in bulk vessels above the ground,” J. Hazardous Materials, 20, 1988. CrossrefCASWeb of Science®Google Scholar Cleaver, R. P., Marshall, M. R., and Linden, P. F., “The build-up of concentration within a single enclosed volume following a release of natural gas,” J. Hazardous Materials, 36, 209– 226, 1994. CrossrefCASWeb of Science®Google Scholar Cleaver, R. P., Cooper, M. G., and Halford, A. R., “Further developments of a model for dense gas dispersion over real terrain,” J. Hazardous Materials, 40, 85– 108, 1995. CrossrefWeb of Science®Google Scholar CMR (Christian Michelsen Research AS), “ Gas Explosion Handbook, Version 1.2,” Ref. No. CMR-93-A25034, p. 63, Bergen, Norway, 1993. (Also listed as Bjerketvedt, 1993.) Google Scholar Colenbrander, G. W., and Puttock, J. S., “ Maplin Sands experiments 1980: interpretation and modeling of liquefied gas spills on sea” in ( G. Ooms, and H. Tennessee, Eds.) Atmospheric Dispersion of Heavy Gases and Small Particles, Springer-Verlag, New York, 1984. CrossrefGoogle Scholar Cook, S. J., Cullis, C. F., and Good, A. J., “The measurement of the flammablililty limits of mists,” Combustion and Flame, 30, 309– 317, 1977. CrossrefCASWeb of Science®Google Scholar Considine, M., Grint, G. C., and Holden, P. L., “ Bulk storage of LPG- factors affecting offsite risk,” I. Chem. E. Symp. Series, No. 71, The Assessment of Major Hazards, 1982. Google Scholar Coward, H. F., and Jones, G. W., “ Limits of flammability of gases and vapors,” Bur. of Mines Bulletin 503, 1952. Google Scholar Cox, A., Lees, F., and Ang, M., “ Classification of Hazardous Locations,” a report of the Inter-Institutional Group Classification of Hazardous Locations (IIGCHL), 1990. Google Scholar Crank, J., The Mathematics of Diffusion, Oxford U. P:ress, London, 1956. Web of Science®Google Scholar CRC Press, CRC Handbook of Chemistry and Physics, Boca Raton, FL, 1997. Google Scholar Crowl, D. A., and Louvar, J. F., Chemical Process Safety: Fundamentals with Applications, Prentice Hall, Englewood Cliffs, NJ, 1990, pp. 163– 164, p. 373. Google Scholar Cullen, The Honorable Lord, “The Public Inquiry into the Piper Alpha Disaster,” HM Stationery Office, London, 1990. Google Scholar Csanady, G. T., Atmos. Env., 3, 25– 46, 1969. CrossrefWeb of Science®Google Scholar Darby, R., “ Viscous two-phase flow through safety relief valves engineering design report,” 20th DIERS Users Group Meeting, Scottsdale, Arizona, April 14–16, 1997. Google Scholar Daubert, T. E., and Danner, R. P., Physical and Thermodynamic Properties of Pure Chemicals, Data Compilation, AIChE, New York, 1989. Google Scholar Davenport, J. A., “A survey of vapor cloud incidents,” Chem. Eng. Progress, 73 (9), September 1977. Web of Science®Google Scholar Also AIChE Loss Prevention, 11, p. 39, 1977. Google Scholar Davenport, J. A., “A study of vapor cloud incidents—an update,” I. Chem. E. Symposium Series No. 80, 4th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries, 1, 1983. Google Scholar DeMarrais, G.A., “Wind speed profiles at Brookhaven National Laboratory,” J Met, 16, 181– 190, 1959. CrossrefWeb of Science®Google Scholar Department of Employment (UK), “ The Flixborough Disaster; Report of the Court of Inquiry,” Her Majesty's Stationery Office, 1995. Google Scholar DeVaull, G. E., and King, J. A., “ Similarity scaling of droplet evaporation and liquid rain-out following the release of superheated flashing liquid to the environment” 85th Annual Meeting, Air & Waste Management Assoc., Kansas City, MO, June 21–26, 1992. Google Scholar Dodge, F., Bowels, E., and White, R., “ Release rate of hazardous chemicals from damaged cargo vessels,” Proc. 1980 National Conference on Control of Hazardous Materials Spills, 1980. Google Scholar Donaldson, C., and Snedecker, C., “A study of free jet impingement,” J. Fluid Mechanics, 45, 281– 319, 1971. CrossrefWeb of Science®Google Scholar DNV Technica, Inc., SAFETI User's Manual, London and Houston, 1988. Google Scholar DNV Technica, Inc., PHAST Version 2.0 Theory Manual, London and Houston, 1989. Google Scholar DNV Technica, Inc., Consequence Modeling Documentation, SAFETI Version 3.41, Houston, October 1997. Google Scholar Drivas, P. J., “Calculation of evaporative emissions from multicomponent liquid spills,” Environ. Sci. Technol., 16, 726– 728, 1982. CrossrefCASWeb of Science®Google Scholar Dryden, H. L., Murnaghan, F. D., and Bateman, H., in Hydrodynamics Dover Publications, New York, 1936, p. 540. Google Scholar Duijm, N. J., Jones, S. J., Martin, D., and Weber, D. M., “ The effect of obstacles on dense gas clouds,” in ( J. J. Mewis, H. J. Pasmas, and E. E. DeRademaeker, Eds.), Loss Prevention and Safety Promotion in the Process Industries, 1, Elsevier Science Publishers, New York, 1995, pp. 185– 196. Google Scholar Dumas, R., Arzoumanian, E., and Fulachier, L., “Probabilities conditionmelles spatiotemporelles des fluctuations de temperature dans un couche limite turbulente,” Comptes Rendues Acad. Sci. Paris, 284B, 487– 490, 1977. Google Scholar Dyer, A. J., and Hicks, B. B., “Flux-gradient relationships in the constant flux layer,” Quart. J. Roy. Meteorol. Soc., 96, 715– 721, 1970. Wiley Online LibraryWeb of Science®Google Scholar Edgerton, A., and Powling, J., “The limits of flame propagation at atmospheric pressure. II. The influences of changes in the physical properties,” Proc. Roy. Soc., 193A, 1948. Google Scholar Eggen, J. B. M. M., “ Guidance for Application of the Multi-Energy method,” TNO Prins Maurits Laboratory report, March, 1995. Google Scholar Eichhorn, J., “Careful! Mists can explode,” Petroleum Refiner, 34 (11) 194– 196, Nov. 1955. Google Scholar Ely, J. F., and M. L. Huber, “ NIST Thermophysical Properties of Hydrocarbon Mixtures Database, Version 1.0 User's Guide,” US Dept. of Commerce, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD 20899, Feb. 1990. Google Scholar EPA (U. S. Environmental Protection Agency) “ Model risk management program and plan for ammonia refrigeration,” by Science Applications International Corp., Table 2.1, (May 1996a). Google Scholar EPA (U. S. Environmental Protection Agency) “ RMP offsite consequence analysis guidance” (May 24, 1996b). Google Scholar Ermak, D. L., and Chan, S. T., “ Recent developments on the FEM3 and SLAB atmospheric dispersion models,” Proc. IMA Conf. on Stability Sratified Flows and Dense Gas Dispersion, Chester, UK, April 9–10, 1986. Google Scholar Ermak, D. L., “User's Manual for SLAB: At Atmospheric Dispersion Model for Denser-Than-Air Releases,” Lawrence Livermore National Laboratory, Livermore, CA 94550, 1989. Google Scholar Factory Mutual, “Properties of flammable liquids, gases, and solids,” Ind. Eng. Chem., 32, 880– 884, 1940. CrossrefGoogle Scholar Factory Mutual Engineering Corp., Handbook of Industrial Loss Prevention, McGraw-Hill, New York, 1967. Google Scholar Fauske, H.K., “The Discharge of Saturated Water Through Tubes,” Chem. Eng. Prog. Symp. Series, 61, 210– 216, 1965. CASGoogle Scholar Fauske, H. K., “Flashing flows or some practical guidelines for emergency releases,” Plant/Operations Progress, 4, (3) 132– 134, July 1985. Wiley Online LibraryCASGoogle Scholar Fay, J. A., and Lewis, D. H., The inflammability and dispersion of LNG vapor clouds, Proc. 4th Int. Symp. on Transport of Hazardous Cargoes by Sea and Inland Waterway, U. S. Coast Guard, Washington, DC, 1975, pp. 489– 498. Google Scholar Fiock, E. F., “ Measurement of burning velocity,” in ( B. Lewis, R. N. Pease, and H. S. Taylor, Eds.) High Speed Aerodynamic and Jet Propulsion, Vol. IX, pt. 2. Geoffry Cumberledge/Oxford Univ. Press, London, 1955, p. 409. Google Scholar Flacher, A., “ Experfimentelle untersuchung der ausbreitung einer schwergaswolke auf geneigtem grund,” Thesis supervised by J. Muller and T. K. Fannelop, Institut für Fluiddynamik, ETH Zurich, Switzerland, 1994. Google Scholar Frie, J. L., Page, G. A., and Buckland, A. C., “ Improved evaporation model for spills of multicomponent nonideal liquids,” AIChE Symposium Series No. 288, 88, Heat Transfer Conf., San Diego, CA, 1992, pp. 344– 349. Google Scholar Gaydon, A. G., and Wolfhard, H. G., Flames: Their Structure, Radiation, and Temperature, Chapman and Hill, London, 1970. Google Scholar Geisbrecht, H., et al., “Explosion hazard analysis of inflammable gas released spontaneously into the atmosphere,” Chem. Ing. Tech., 52, (2) 114, 1980. [in German] Google Scholar Gerstein, M., Levine, L., and Wong, E. L., “Fundamental flame velocities of pure hydrocarbons,” NACA Research Memorandum, RM E50G24, National Advisory Committee for Aeronautics, Washington, DC, 1950. Google Scholar Gibbon, H. J., Wainwright, J., and Rogers, R. L., “Experimental determination of flammability limits of solvents at elevated temperatures and pressures,” Hazards, XII, p. 1, 1994. Google Scholar Gifford, F. A., “ Turbulent diffusion typing schemes: A review,” under (R. L. Schoup, Ed.) “Consequences of Effluent Release,” Nucl. Safety 17 (1), 68– 86, 1976. Google Scholar Glasstone, S., “ The Effects of Nuclear Weapons,” U.S. Atomic Energy Commission, p. 147, April, 1961, reprinted by the U. S. Dept. of Defense, Washington, DC, 1994. Google Scholar Glickman, T. S., and Ujihara, A. M., “Deciding between in-place protection and evacuation in toxic vapor cloud emergencies,” J. Hazardous Materials, 23, 57– 72, 1990. CrossrefWeb of Science®Google Scholar Green, R. L., and Dresser, D. E., “ Heat transfer fluid fires and their prevention in vapor thermal liquid systems,” AIChE National Meeting, Paper 9d, Houston, TX, April 4, 1989. Google Scholar Gresho, P. M., Chan, S. T., Upson, C. D., and Lee, R. L., Int. J. Num. Meth. Fluids, 4, 557, 619, 1984; Wiley Online LibraryWeb of Science®Google Scholar Grolmes, M. A., Leung, J. C., and Fauske, H. K., “ A review of simplified multi-phase flow methods for emergency relief calculations,” Paper No. 4a, AIChE Meeting, Orlando, Florida, March 18–22, 1990. Google Scholar Grot, R. A., and Persily, A. K., “ Measured air infiltration and ventilation rates in eight large office buildings,” Am. Soc. for Testing Materials, 151– 183, 1986. Google Scholar Gugan, K., “The explosion and fire at New Yorkpro (UK) Ltd., Flixborough,” Flixborough Court of Inquiry, J. H. Burgoyne and Partners, London, 1975. Web of Science®Google Scholar Gugan, K., “Flixborough—a combustion specialist's viewpoint,” Chem. Engr., London, 309, 341, 1976. CASGoogle Scholar Gugan, K., Unconfined Vapor Cloud Explosions, IChemE, London, 1979. Web of Science®Google Scholar Gustafson, R. M, and Mudan, K.S., “ Ignition potential distribution for heavy gas plumes,” Intl. Conf. on Vapor Cloud Modeling, Boston, Mass., 816– 843. Nov. 2–4, 1987. Google Scholar Hanna, S. R., Briggs, G. A., and Hosker, R. P., Handbook on Atmospheric Diffusion, DoE/TIC-11223, 102 pp., 1982. Google Scholar Hanna, S. R., “ Applications in air pollution modeling,” Chapter 7 in Atmospheric Turbulence and Air Pollution Modeling, D. Reidel, Dordrecht, The Netherlands, 1982, pp. 275– 310. Google Scholar Hanna, S. R., Chang, J. C., and Strimaitis, D. G., “Hazardous gas model evaluation with field observations,” Atmospheric Environment, 27A, (15) 2265– 2285, 1993. CrossrefCASGoogle Scholar Hansel, J. G., Mitchell, J. W., and Klotz, H. C., “Predicting and controlling flammability of multiple fuel and multiple inert mixtures,” Plant/Operations Prog. 11 (4) 213– 217, 1992. Wiley Online LibraryGoogle Scholar Harris, R. J., “ Gas explosions in buildings and heating plant,” Explosion and Fire News Spon. (British Gas), London, 1983. Google Scholar Harrison, A. J., and Eyre, J. A., “The effect of obstacle arrays on the combustion of large premixed gas/air clouds,” Combustion Jcl and Tech., 32, 121– 137, 1987. CrossrefWeb of Science®Google Scholar Havens, J. A., “ A Dispersion Model for Elevated Dense Gas Jet Chemical Releases,” Volumes I and II, EPA-450/4-88-006, U. S. Environmental Protection Agency, 1988. Google Scholar Havens, J.A., and Spicer, T.O., “ LNG Vapor Dispersion Prediction with the DEGADIS Dense Cloud Dispersion Model,” Gas and Research Institute Report, Contract 5086–252–1287 (September 1990) p. 27. Google Scholar Hayashi, S., and Ohtani, T., “ Limiting factor of flame propagation in low-volatility fuel clouds,” 18th Int. Symp. on Combustion at U. of Waterloo, Canada, Aug. 17–22, 1980, Combustion Institute, Pittsburgh, PA, 1981. Google Scholar Hazardous Cargo Bulletin, “Asking for trouble,” 11 (11), p. 86, Nov. 1990. Google Scholar Heinhold, D. W., Paine, R. J., Walker, K. C., and Smith, D. G., “ Evaluation of the AIRTOX dispersion algorithms using data from heavy gas field experiments,” Proc. 5th Conf. on Application of Air Poll. Meteorology, AMS, Boston, 1986. Google Scholar Henry, R. E., and Fauske, H. K., “ The two-phase critical flow of one-component mixtures in nozzles, orifices, and short-tubes,” J. Heat Transfer, Trans. of the ASME, 179– 187, May 1971 (also Paper No. 70-WA/HT-5, same title). Google Scholar Hesse, D. J., “ A computational procedure for calculating the mass of flammable vapor in a neutrally buoyant cloud,” International Conference and Workshop on Modeling and Mitigating the Consequences of Accidental Releases of Hazardous Materials, New Orleans, LA, May 20–24, 1991, pp. 511– 528. Google Scholar Hinze, J. D., “Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes,” AIChE Journal, 1, (4), 289– 295, 1955. Wiley Online LibraryCASWeb of Science®Google Scholar Hosker, R.P. Jr., “ Estimates of dry deposition and plume depletion over forests and grassland,” in Radioactive Contaminants in the Atmosphere, Symposium Proceedings, International Atomic Energy Agency, Vienna, 1973, pp. 291– 309. Google Scholar Hosker, R. P. Jr., and Pendergrass, W. R., “ Flow and Dispersion near Clusters of Buildings,” NOAA Technical Memorandum ERL-ARL-153, June, 1987. Google Scholar Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinetmatical studies of the flow around free or surface-mounted obstacles; applying topology to flow visualization,” J. Fluid Mechanics, 86, (1), 179– 200, 1977. CrossrefWeb of Science®Google Scholar Irwin, J.S., and Cope, A.M., “A theoretical variation of the wind profile power law exponent as a function of surface roughness and stability,” Atmos Environment, 13, 1979, pp. 191– 194. CrossrefWeb of Science®Google Scholar Islitzer, N., and Slade, D. H., “ Diffusion and Transport Experiments in Meteorology and Atomic Energy,” USAEC Report TID-24190, pp. 117–118, Environmental Sciences Services Administration, Washington, DC, 1968. Google Scholar Izumi, Y., “ Kansas 1968 Field Program Data Report,” AFCRL-72-0041, Air Force Cambridge Research Laboratory (LYB), L.G. Hansom Field, Bedford, MA 1971. Google Scholar Jann, P. R., “Evaluation of temporary safe havens,” J. Loss Prev. Process Ind., 2, 33– 39, 1989. CrossrefWeb of Science®Google Scholar Jobson, D. A., “On the flow of compressible fluids through orifices,” Proc. Instn. Mech. Engrs., 169, (37), 767– 776, 1955. See Chisholm (1983). CrossrefGoogle Scholar Jones, G. W., “Inflammation limits and their practical application in hazardous industrial operations,” Chemical Review, 22, 1938. CrossrefGoogle Scholar Jones, T. B., and Spracklen, C. T., “ Ionospheric effects of the Flixborough disaster,” Nature, 250, 719, Aug. 30, 1974. Google Scholar Jones, T. B., “ Ionospheric effects of the Flixborough explosion,” Report to Flixborough Court of Inquiry (U. of Leicester) 1975. Google Scholar Keagy, W.R., and Weller, A.E., “A Study of freely expanding inhomogeneous jets,” Heat Transfer and Fluid Mech Inst., 2, 89– 98, 1949. Google Scholar Kingery, C. N., and Bulmash, G., “ Air Blast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst,” Tech. Rep. ARBRL-TR 02555, US Army Ballistic Res. Lab., Aberdeen Proving Ground, MD, 1964. Google Scholar Kinsella, K. G., “ A rapid assessment methodology for the prediction of vapor cloud explosion overpressure,” Proc. Int. Conf. on Safety, Health and Loss Prevention in the Oil, Chemical and Process Industries, Singapore, February 1993. Google Scholar Kletz, T. A., “Unconfined vapor cloud explosions,” AIChE Loss Prevention, 11, p. 50, 1977. Google Scholar Kletz, T. A., Critical Aspects of Safety and Loss Prevention, Butterworths, Stoneham, MA, 1990. Google Scholar Koestel, A., Gido, R. G., and Lamkin, D. E., “ Drop size estimates for a loss-of-coolant accident,” NUREG/CR-1607, LA 8449, Washington, DC, August 1980. Google Scholar Kohlen, R., Becker, C. D., and Ruppert, K. A., “ Ein Beitrag zur Darstellung der Explosionsgrenzen Brennbarer Gase,” Chem.-Ing.-Tech, MS 2034, 1992. Google Scholar Kong, D., Eckhoff, R. K., and Alfert, F., “Auto-ignition of CH4/air, C3H8/air, CH4/C3H8/air and CH4/CO2/air using a 1 liter ignition bomb,” J. Haz. Materials, 40, 69– 84, 1995. CrossrefWeb of Science®Google Scholar Krawitz, A. A. et al., “ Physical and Chemical Properties of Lubricants,” Tec" @default.
- W4206047463 created "2022-01-26" @default.
- W4206047463 date "1999-07-01" @default.
- W4206047463 modified "2023-09-23" @default.
- W4206047463 title "References" @default.
- W4206047463 cites W177152119 @default.
- W4206047463 cites W1963885139 @default.
- W4206047463 cites W1964674648 @default.
- W4206047463 cites W1965253966 @default.
- W4206047463 cites W1969256831 @default.
- W4206047463 cites W1969368071 @default.
- W4206047463 cites W1974894754 @default.
- W4206047463 cites W1977140150 @default.
- W4206047463 cites W1978530146 @default.
- W4206047463 cites W1979695145 @default.
- W4206047463 cites W1983502296 @default.
- W4206047463 cites W1987766660 @default.
- W4206047463 cites W1990766469 @default.
- W4206047463 cites W1993757006 @default.
- W4206047463 cites W1993895031 @default.
- W4206047463 cites W1996964557 @default.
- W4206047463 cites W2002889017 @default.
- W4206047463 cites W2006246263 @default.
- W4206047463 cites W2007667683 @default.
- W4206047463 cites W2010874729 @default.
- W4206047463 cites W2011327015 @default.
- W4206047463 cites W2014297828 @default.
- W4206047463 cites W2015496105 @default.
- W4206047463 cites W2025512383 @default.
- W4206047463 cites W2028738096 @default.
- W4206047463 cites W2029563903 @default.
- W4206047463 cites W2029836820 @default.
- W4206047463 cites W2034700308 @default.
- W4206047463 cites W2036045187 @default.
- W4206047463 cites W2038919275 @default.
- W4206047463 cites W2042128779 @default.
- W4206047463 cites W2045321167 @default.
- W4206047463 cites W2047240050 @default.
- W4206047463 cites W2047497169 @default.
- W4206047463 cites W2049379536 @default.
- W4206047463 cites W2053202532 @default.
- W4206047463 cites W2053316939 @default.
- W4206047463 cites W2056892626 @default.
- W4206047463 cites W2059120165 @default.
- W4206047463 cites W2059205508 @default.
- W4206047463 cites W2063139317 @default.
- W4206047463 cites W2071232650 @default.
- W4206047463 cites W2071556276 @default.
- W4206047463 cites W2071657851 @default.
- W4206047463 cites W2071826251 @default.
- W4206047463 cites W2073116991 @default.
- W4206047463 cites W2076101278 @default.
- W4206047463 cites W2084858631 @default.
- W4206047463 cites W2086446348 @default.
- W4206047463 cites W2086839122 @default.
- W4206047463 cites W2091343336 @default.
- W4206047463 cites W2093273248 @default.
- W4206047463 cites W2105187327 @default.
- W4206047463 cites W2122682577 @default.
- W4206047463 cites W2126031086 @default.
- W4206047463 cites W2127502481 @default.
- W4206047463 cites W2135360849 @default.
- W4206047463 cites W2147292767 @default.
- W4206047463 cites W2148292120 @default.
- W4206047463 cites W2151016687 @default.
- W4206047463 cites W2173760900 @default.
- W4206047463 cites W2314559488 @default.
- W4206047463 cites W2498326864 @default.
- W4206047463 cites W2992618128 @default.
- W4206047463 cites W304352329 @default.
- W4206047463 cites W4233262330 @default.
- W4206047463 cites W4238636333 @default.
- W4206047463 cites W4251125770 @default.
- W4206047463 cites W1984100433 @default.
- W4206047463 cites W1985562693 @default.
- W4206047463 cites W2063571281 @default.
- W4206047463 doi "https://doi.org/10.1002/9780470935361.refs" @default.
- W4206047463 hasPublicationYear "1999" @default.
- W4206047463 type Work @default.
- W4206047463 citedByCount "0" @default.
- W4206047463 crossrefType "other" @default.
- W4206047463 hasBestOaLocation W42060474631 @default.
- W4206047463 hasConcept C41008148 @default.
- W4206047463 hasConceptScore W4206047463C41008148 @default.
- W4206047463 hasLocation W42060474631 @default.
- W4206047463 hasOpenAccess W4206047463 @default.
- W4206047463 hasPrimaryLocation W42060474631 @default.
- W4206047463 hasRelatedWork W1596801655 @default.
- W4206047463 hasRelatedWork W2130043461 @default.
- W4206047463 hasRelatedWork W2350741829 @default.
- W4206047463 hasRelatedWork W2358668433 @default.
- W4206047463 hasRelatedWork W2376932109 @default.
- W4206047463 hasRelatedWork W2382290278 @default.
- W4206047463 hasRelatedWork W2390279801 @default.
- W4206047463 hasRelatedWork W2748952813 @default.
- W4206047463 hasRelatedWork W2899084033 @default.
- W4206047463 hasRelatedWork W2530322880 @default.
- W4206047463 isParatext "false" @default.