Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206076350> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4206076350 endingPage "45" @default.
- W4206076350 startingPage "38" @default.
- W4206076350 abstract "At present, health disorder is growing day by way of the day due to existence lifestyle, hereditary. Particularly, heart disease has ended up greater frequent these days. Heart disorder prognosis technique is very quintessential and integral trouble for the patient's health. Besides, it will help out to limit disorder to a larger distinctive level. The role of using strategy like machine learning and algorithm such as heart disease diagnosis using Data Mining(DM) techniques is very significant. In the previous system, the Fuzzy Extreme Learning Machine (FELM) was proposed to predict heart disease, ensuring an accurate and timely diagnosis. However, it only achieves 87.14 % of accuracy. To improve the classification accuracy, the proposed system designed an Improved Step Adjustment based Glowworm Swarm Optimization Algorithm with Weighted Feature based Support Vector Machine (ISAGSO-WFSVM) for Heart disease diagnosis. This proposed venture utilizes the dataset of heart disease for input. Using the Improved Step Adjustment based Glowworm Swarm Optimization Algorithm (ISAGSO) to enhance the true positive rate, optimal features are then selected. Finally, with the aid of the Weighted Feature based Support Vector Machine (WFSVM) classifier, classification is carried out relying selected features. In the proposed method, better performance obtained and that is validated through the experimental results in terms of precision, accuracy, recall and f-measures" @default.
- W4206076350 created "2022-01-26" @default.
- W4206076350 creator A5008366217 @default.
- W4206076350 creator A5034043156 @default.
- W4206076350 date "2022-01-03" @default.
- W4206076350 modified "2023-10-01" @default.
- W4206076350 title "Heart Disease Prediction Using Glowworm Swarm Optimization and Support Vector Machine Classifier" @default.
- W4206076350 cites W1236578543 @default.
- W4206076350 cites W1544168896 @default.
- W4206076350 cites W1967605202 @default.
- W4206076350 cites W2036190841 @default.
- W4206076350 cites W2147273498 @default.
- W4206076350 cites W2163215699 @default.
- W4206076350 cites W2461147230 @default.
- W4206076350 cites W2566909686 @default.
- W4206076350 cites W2585958134 @default.
- W4206076350 cites W2756063524 @default.
- W4206076350 cites W2782983309 @default.
- W4206076350 cites W2783138871 @default.
- W4206076350 cites W2784013285 @default.
- W4206076350 cites W2792910277 @default.
- W4206076350 cites W2798566193 @default.
- W4206076350 cites W2939942289 @default.
- W4206076350 cites W2955157175 @default.
- W4206076350 cites W3039864288 @default.
- W4206076350 cites W2890070546 @default.
- W4206076350 doi "https://doi.org/10.46300/91011.2022.16.6" @default.
- W4206076350 hasPublicationYear "2022" @default.
- W4206076350 type Work @default.
- W4206076350 citedByCount "0" @default.
- W4206076350 crossrefType "journal-article" @default.
- W4206076350 hasAuthorship W4206076350A5008366217 @default.
- W4206076350 hasAuthorship W4206076350A5034043156 @default.
- W4206076350 hasBestOaLocation W42060763501 @default.
- W4206076350 hasConcept C119857082 @default.
- W4206076350 hasConcept C12267149 @default.
- W4206076350 hasConcept C138885662 @default.
- W4206076350 hasConcept C142724271 @default.
- W4206076350 hasConcept C153180895 @default.
- W4206076350 hasConcept C154945302 @default.
- W4206076350 hasConcept C2776401178 @default.
- W4206076350 hasConcept C2780074459 @default.
- W4206076350 hasConcept C41008148 @default.
- W4206076350 hasConcept C41895202 @default.
- W4206076350 hasConcept C58166 @default.
- W4206076350 hasConcept C71924100 @default.
- W4206076350 hasConcept C95623464 @default.
- W4206076350 hasConceptScore W4206076350C119857082 @default.
- W4206076350 hasConceptScore W4206076350C12267149 @default.
- W4206076350 hasConceptScore W4206076350C138885662 @default.
- W4206076350 hasConceptScore W4206076350C142724271 @default.
- W4206076350 hasConceptScore W4206076350C153180895 @default.
- W4206076350 hasConceptScore W4206076350C154945302 @default.
- W4206076350 hasConceptScore W4206076350C2776401178 @default.
- W4206076350 hasConceptScore W4206076350C2780074459 @default.
- W4206076350 hasConceptScore W4206076350C41008148 @default.
- W4206076350 hasConceptScore W4206076350C41895202 @default.
- W4206076350 hasConceptScore W4206076350C58166 @default.
- W4206076350 hasConceptScore W4206076350C71924100 @default.
- W4206076350 hasConceptScore W4206076350C95623464 @default.
- W4206076350 hasLocation W42060763501 @default.
- W4206076350 hasOpenAccess W4206076350 @default.
- W4206076350 hasPrimaryLocation W42060763501 @default.
- W4206076350 hasRelatedWork W1996541855 @default.
- W4206076350 hasRelatedWork W2041399278 @default.
- W4206076350 hasRelatedWork W2056016498 @default.
- W4206076350 hasRelatedWork W2136184105 @default.
- W4206076350 hasRelatedWork W2336974148 @default.
- W4206076350 hasRelatedWork W2389470892 @default.
- W4206076350 hasRelatedWork W3013515612 @default.
- W4206076350 hasRelatedWork W3195168932 @default.
- W4206076350 hasRelatedWork W2187500075 @default.
- W4206076350 hasRelatedWork W2345184372 @default.
- W4206076350 hasVolume "16" @default.
- W4206076350 isParatext "false" @default.
- W4206076350 isRetracted "false" @default.
- W4206076350 workType "article" @default.