Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206081240> ?p ?o ?g. }
- W4206081240 endingPage "116440" @default.
- W4206081240 startingPage "116440" @default.
- W4206081240 abstract "High-quality (HQ) three-dimensional (3D) images are the premise of analyzing the properties of porous media such as rocks. X-ray computed tomography (CT) is one of the most widely used imaging tools to capture the 3D images of rock samples. Nevertheless, the quality (e.g., resolution, sharpness, and the signal-to-noise ratio) of the collected rock CT images may not meet the needs of practical applications in some cases due to the limitations of imaging systems, leading to inaccurate results of property analysis. In this paper, aiming at improving the quality of rock CT images as well as the accuracy of property analysis, we develop a two-stage deep generative adversarial quality enhancement network for real-world 3D CT images, namely the CTQENet. More specifically, the proposed CTQENet consists of a two-dimensional (2D) reconstruction module (2DRM) and a 3D fusion module (3DFM), which enhance the quality of 3D CT images from the perspective of 2D slices and 3D volumes, respectively. In order to remove artifacts and enhance the resolution of real-world CT images, the 2DRM takes the cycle-consistent generative adversarial network as the backbone to learn the mapping from low-quality (LQ) 2D slices to HQ ones without one-to-one paired training data. Then, the 3D CT volumes stacked by the reconstructed HQ slices along the x/y/z-axis are adaptively fused in the generative adversarial network-based 3DFM, to achieve more reliable 3D morphological structures. Qualitative and quantitative comparisons show the effectiveness of the proposed CTQENet for real-world 3D CT images of rock samples. In particular, the reconstructed HQ 3D CT images by CTQENet show similar morphological characteristics and statistical properties with HQ targets. This study makes it possible to obtain higher quality 3D CT images that partly exceed the limitations of CT imaging systems for better visual experience and more accurate property analysis." @default.
- W4206081240 created "2022-01-25" @default.
- W4206081240 creator A5021067690 @default.
- W4206081240 creator A5029742741 @default.
- W4206081240 creator A5037341970 @default.
- W4206081240 creator A5039718733 @default.
- W4206081240 creator A5047372535 @default.
- W4206081240 date "2022-05-01" @default.
- W4206081240 modified "2023-10-09" @default.
- W4206081240 title "A two-stage deep generative adversarial quality enhancement network for real-world 3D CT images" @default.
- W4206081240 cites W1885185971 @default.
- W4206081240 cites W1974125392 @default.
- W4206081240 cites W1974438823 @default.
- W4206081240 cites W1983364832 @default.
- W4206081240 cites W2015515873 @default.
- W4206081240 cites W2024048510 @default.
- W4206081240 cites W2060678222 @default.
- W4206081240 cites W2069999296 @default.
- W4206081240 cites W2071308411 @default.
- W4206081240 cites W2102166818 @default.
- W4206081240 cites W2102344932 @default.
- W4206081240 cites W2133059825 @default.
- W4206081240 cites W2508457857 @default.
- W4206081240 cites W2547518618 @default.
- W4206081240 cites W2565312867 @default.
- W4206081240 cites W2606759614 @default.
- W4206081240 cites W2613295909 @default.
- W4206081240 cites W2617128058 @default.
- W4206081240 cites W2625386759 @default.
- W4206081240 cites W2753044865 @default.
- W4206081240 cites W2767882955 @default.
- W4206081240 cites W2769361912 @default.
- W4206081240 cites W2784344583 @default.
- W4206081240 cites W2795777276 @default.
- W4206081240 cites W2800146389 @default.
- W4206081240 cites W2803044806 @default.
- W4206081240 cites W2804870822 @default.
- W4206081240 cites W2809144587 @default.
- W4206081240 cites W2891269274 @default.
- W4206081240 cites W2894289548 @default.
- W4206081240 cites W2895957955 @default.
- W4206081240 cites W2899522612 @default.
- W4206081240 cites W2908848055 @default.
- W4206081240 cites W2911075534 @default.
- W4206081240 cites W2911268982 @default.
- W4206081240 cites W2920523654 @default.
- W4206081240 cites W2924214968 @default.
- W4206081240 cites W2937843000 @default.
- W4206081240 cites W2947768660 @default.
- W4206081240 cites W2960060338 @default.
- W4206081240 cites W2961218591 @default.
- W4206081240 cites W2962793481 @default.
- W4206081240 cites W2963717866 @default.
- W4206081240 cites W2963891322 @default.
- W4206081240 cites W2964267765 @default.
- W4206081240 cites W2965774906 @default.
- W4206081240 cites W2968337696 @default.
- W4206081240 cites W2970437588 @default.
- W4206081240 cites W2991322414 @default.
- W4206081240 cites W3007930095 @default.
- W4206081240 cites W3010092235 @default.
- W4206081240 cites W3011941780 @default.
- W4206081240 cites W3012889474 @default.
- W4206081240 cites W3034613356 @default.
- W4206081240 cites W3101162162 @default.
- W4206081240 cites W3103067313 @default.
- W4206081240 cites W3105198140 @default.
- W4206081240 cites W3106295246 @default.
- W4206081240 cites W3112766822 @default.
- W4206081240 cites W3113141251 @default.
- W4206081240 cites W3121121992 @default.
- W4206081240 cites W3122799380 @default.
- W4206081240 doi "https://doi.org/10.1016/j.eswa.2021.116440" @default.
- W4206081240 hasPublicationYear "2022" @default.
- W4206081240 type Work @default.
- W4206081240 citedByCount "2" @default.
- W4206081240 countsByYear W42060812402023 @default.
- W4206081240 crossrefType "journal-article" @default.
- W4206081240 hasAuthorship W4206081240A5021067690 @default.
- W4206081240 hasAuthorship W4206081240A5029742741 @default.
- W4206081240 hasAuthorship W4206081240A5037341970 @default.
- W4206081240 hasAuthorship W4206081240A5039718733 @default.
- W4206081240 hasAuthorship W4206081240A5047372535 @default.
- W4206081240 hasConcept C108583219 @default.
- W4206081240 hasConcept C111472728 @default.
- W4206081240 hasConcept C119857082 @default.
- W4206081240 hasConcept C138885662 @default.
- W4206081240 hasConcept C146357865 @default.
- W4206081240 hasConcept C151730666 @default.
- W4206081240 hasConcept C153180895 @default.
- W4206081240 hasConcept C154945302 @default.
- W4206081240 hasConcept C2779530757 @default.
- W4206081240 hasConcept C2988773926 @default.
- W4206081240 hasConcept C31972630 @default.
- W4206081240 hasConcept C37736160 @default.
- W4206081240 hasConcept C39890363 @default.
- W4206081240 hasConcept C41008148 @default.
- W4206081240 hasConcept C86803240 @default.