Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206100958> ?p ?o ?g. }
- W4206100958 endingPage "134" @default.
- W4206100958 startingPage "121" @default.
- W4206100958 abstract "As a typical multigranularity data analysis model, multi-scale rough sets have attracted considerable attention in recent years. However, classical multi-scale rough sets and most of its extended models can only deal with discrete data, which limits its popularization and application. To overcome this problem, we investigate the fuzzy generalization of multi-scale rough sets as well as their application in feature selection for continuous data. To this end, a new type of decision systems, i.e., multi-scale fuzzy decision systems, is formalized to represent knowledge at different scales. Scaled fuzzy granules in terms of a family of scaled fuzzy relations are introduced, using which the granular structures of fuzzy lower and upper approximations are presented. A heuristic lattice-based optimal scale selection algorithm is then put forward from the viewpoint of maintaining the consistency of decision systems. Decision rules with strong generalization ability can be obtained by selecting appropriate scales. Finally, a forward feature selection algorithm was developed by means of the optimal scale to reduce redundant fuzzy relations. Extensive numerical experiments are further conducted to compare the proposed algorithm with some state-of-the-art algorithms. The experimental results show that our model can improve the generalization ability of fuzzy rough set, so as to be more feasible and effective." @default.
- W4206100958 created "2022-01-25" @default.
- W4206100958 creator A5028573018 @default.
- W4206100958 creator A5081963904 @default.
- W4206100958 date "2023-02-01" @default.
- W4206100958 modified "2023-10-14" @default.
- W4206100958 title "Feature Subset Selection With Multi-Scale Fuzzy Granulation" @default.
- W4206100958 cites W1967165005 @default.
- W4206100958 cites W1992915331 @default.
- W4206100958 cites W1999010772 @default.
- W4206100958 cites W2016944307 @default.
- W4206100958 cites W2027654459 @default.
- W4206100958 cites W2031992207 @default.
- W4206100958 cites W2061152895 @default.
- W4206100958 cites W2061554433 @default.
- W4206100958 cites W2071255876 @default.
- W4206100958 cites W2072816950 @default.
- W4206100958 cites W2085843933 @default.
- W4206100958 cites W2087025987 @default.
- W4206100958 cites W2097923398 @default.
- W4206100958 cites W2135596587 @default.
- W4206100958 cites W2153676086 @default.
- W4206100958 cites W2168523997 @default.
- W4206100958 cites W2170755382 @default.
- W4206100958 cites W2292553612 @default.
- W4206100958 cites W2330216853 @default.
- W4206100958 cites W2511098035 @default.
- W4206100958 cites W2555871690 @default.
- W4206100958 cites W2587045492 @default.
- W4206100958 cites W2605772523 @default.
- W4206100958 cites W2732347010 @default.
- W4206100958 cites W2743621318 @default.
- W4206100958 cites W2810329611 @default.
- W4206100958 cites W2883355296 @default.
- W4206100958 cites W2887269903 @default.
- W4206100958 cites W2888781447 @default.
- W4206100958 cites W2889210423 @default.
- W4206100958 cites W2892294644 @default.
- W4206100958 cites W2903798166 @default.
- W4206100958 cites W2913852222 @default.
- W4206100958 cites W2919745593 @default.
- W4206100958 cites W2944017292 @default.
- W4206100958 cites W2946461872 @default.
- W4206100958 cites W2946848072 @default.
- W4206100958 cites W2969665247 @default.
- W4206100958 cites W2975591339 @default.
- W4206100958 cites W2982507320 @default.
- W4206100958 cites W2989196101 @default.
- W4206100958 cites W2994713090 @default.
- W4206100958 cites W2997488121 @default.
- W4206100958 cites W3008335143 @default.
- W4206100958 cites W3020067472 @default.
- W4206100958 cites W3043140966 @default.
- W4206100958 cites W3092051759 @default.
- W4206100958 cites W3109271319 @default.
- W4206100958 cites W3113454830 @default.
- W4206100958 cites W3115899077 @default.
- W4206100958 cites W3118643612 @default.
- W4206100958 cites W3132263652 @default.
- W4206100958 cites W3132856058 @default.
- W4206100958 cites W3134951548 @default.
- W4206100958 cites W3145718454 @default.
- W4206100958 cites W3151033386 @default.
- W4206100958 cites W3164150245 @default.
- W4206100958 cites W3189365424 @default.
- W4206100958 doi "https://doi.org/10.1109/tai.2022.3144242" @default.
- W4206100958 hasPublicationYear "2023" @default.
- W4206100958 type Work @default.
- W4206100958 citedByCount "5" @default.
- W4206100958 countsByYear W42061009582022 @default.
- W4206100958 countsByYear W42061009582023 @default.
- W4206100958 crossrefType "journal-article" @default.
- W4206100958 hasAuthorship W4206100958A5028573018 @default.
- W4206100958 hasAuthorship W4206100958A5081963904 @default.
- W4206100958 hasConcept C111012933 @default.
- W4206100958 hasConcept C11413529 @default.
- W4206100958 hasConcept C124101348 @default.
- W4206100958 hasConcept C126255220 @default.
- W4206100958 hasConcept C127385683 @default.
- W4206100958 hasConcept C134306372 @default.
- W4206100958 hasConcept C138885662 @default.
- W4206100958 hasConcept C148483581 @default.
- W4206100958 hasConcept C148671577 @default.
- W4206100958 hasConcept C154945302 @default.
- W4206100958 hasConcept C173801870 @default.
- W4206100958 hasConcept C177148314 @default.
- W4206100958 hasConcept C2776401178 @default.
- W4206100958 hasConcept C33923547 @default.
- W4206100958 hasConcept C41008148 @default.
- W4206100958 hasConcept C41895202 @default.
- W4206100958 hasConcept C42011625 @default.
- W4206100958 hasConcept C58166 @default.
- W4206100958 hasConceptScore W4206100958C111012933 @default.
- W4206100958 hasConceptScore W4206100958C11413529 @default.
- W4206100958 hasConceptScore W4206100958C124101348 @default.
- W4206100958 hasConceptScore W4206100958C126255220 @default.
- W4206100958 hasConceptScore W4206100958C127385683 @default.
- W4206100958 hasConceptScore W4206100958C134306372 @default.