Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206104073> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4206104073 abstract "Background: Polygenic risk scores (PRSs), which sum the effects of SNPs throughout the genome to measure risk afforded by common genetic variants, have improved our ability to estimate disorder risk for Attention-Deficit/Hyperactivity Disorder (ADHD) but the accuracy of risk prediction is rarely investigated. Methods: With the goal of improving risk prediction, we performed gene set analysis of GWAS data to select gene sets associated with ADHD within a training subset. For each selected gene set, we generated gene set polygenic risk scores (gsPRSs), which sum the effects of SNPs for each selected gene set. We created gsPRS for ADHD and for phenotypes having a high genetic correlation with ADHD. These gsPRS were added to the standard PRS as input to machine learning models predicting ADHD. We used feature importance scores to select gsPRS for a final model and to generate a ranking of the most consistently predictive gsPRS. Results: For a test subset that had not been used for training or validation, a random forest (RF) model using PRSs from ADHD and genetically correlated phenotypes and an optimized group of 20 gsPRS had an area under the receiving operating characteristic curve (AUC) of 0.72 (95% CI: 0.70 to 0.74). This AUC was a statistically significant improvement over logistic regression models and RF models using only PRS from ADHD and genetically correlated phenotypes. Conclusions: Summing risk at the gene set level and incorporating genetic risk from disorders with high genetic correlations with ADHD improved the accuracy of predicting ADHD. Learning curves suggest that additional improvements would be expected with larger study sizes. Our study suggests that better accounting of genetic risk and the genetic context of allelic differences results in more predictive models." @default.
- W4206104073 created "2022-01-25" @default.
- W4206104073 creator A5037097953 @default.
- W4206104073 creator A5052145058 @default.
- W4206104073 creator A5052818218 @default.
- W4206104073 date "2022-01-12" @default.
- W4206104073 modified "2023-09-29" @default.
- W4206104073 title "Improving Machine Learning Prediction of ADHD Using Gene Set Polygenic Risk Scores and Risk Scores from Genetically Correlated Phenotypes" @default.
- W4206104073 doi "https://doi.org/10.1101/2022.01.11.22269027" @default.
- W4206104073 hasPublicationYear "2022" @default.
- W4206104073 type Work @default.
- W4206104073 citedByCount "1" @default.
- W4206104073 countsByYear W42061040732022 @default.
- W4206104073 crossrefType "posted-content" @default.
- W4206104073 hasAuthorship W4206104073A5037097953 @default.
- W4206104073 hasAuthorship W4206104073A5052145058 @default.
- W4206104073 hasAuthorship W4206104073A5052818218 @default.
- W4206104073 hasBestOaLocation W42061040731 @default.
- W4206104073 hasConcept C104317684 @default.
- W4206104073 hasConcept C105795698 @default.
- W4206104073 hasConcept C106208931 @default.
- W4206104073 hasConcept C117220453 @default.
- W4206104073 hasConcept C119857082 @default.
- W4206104073 hasConcept C135763542 @default.
- W4206104073 hasConcept C151956035 @default.
- W4206104073 hasConcept C153209595 @default.
- W4206104073 hasConcept C154945302 @default.
- W4206104073 hasConcept C169258074 @default.
- W4206104073 hasConcept C189430467 @default.
- W4206104073 hasConcept C2524010 @default.
- W4206104073 hasConcept C2780783007 @default.
- W4206104073 hasConcept C2993137441 @default.
- W4206104073 hasConcept C33923547 @default.
- W4206104073 hasConcept C41008148 @default.
- W4206104073 hasConcept C54355233 @default.
- W4206104073 hasConcept C58471807 @default.
- W4206104073 hasConcept C70410870 @default.
- W4206104073 hasConcept C71924100 @default.
- W4206104073 hasConcept C86803240 @default.
- W4206104073 hasConceptScore W4206104073C104317684 @default.
- W4206104073 hasConceptScore W4206104073C105795698 @default.
- W4206104073 hasConceptScore W4206104073C106208931 @default.
- W4206104073 hasConceptScore W4206104073C117220453 @default.
- W4206104073 hasConceptScore W4206104073C119857082 @default.
- W4206104073 hasConceptScore W4206104073C135763542 @default.
- W4206104073 hasConceptScore W4206104073C151956035 @default.
- W4206104073 hasConceptScore W4206104073C153209595 @default.
- W4206104073 hasConceptScore W4206104073C154945302 @default.
- W4206104073 hasConceptScore W4206104073C169258074 @default.
- W4206104073 hasConceptScore W4206104073C189430467 @default.
- W4206104073 hasConceptScore W4206104073C2524010 @default.
- W4206104073 hasConceptScore W4206104073C2780783007 @default.
- W4206104073 hasConceptScore W4206104073C2993137441 @default.
- W4206104073 hasConceptScore W4206104073C33923547 @default.
- W4206104073 hasConceptScore W4206104073C41008148 @default.
- W4206104073 hasConceptScore W4206104073C54355233 @default.
- W4206104073 hasConceptScore W4206104073C58471807 @default.
- W4206104073 hasConceptScore W4206104073C70410870 @default.
- W4206104073 hasConceptScore W4206104073C71924100 @default.
- W4206104073 hasConceptScore W4206104073C86803240 @default.
- W4206104073 hasLocation W42061040731 @default.
- W4206104073 hasOpenAccess W4206104073 @default.
- W4206104073 hasPrimaryLocation W42061040731 @default.
- W4206104073 hasRelatedWork W2799952019 @default.
- W4206104073 hasRelatedWork W2899909823 @default.
- W4206104073 hasRelatedWork W2989024456 @default.
- W4206104073 hasRelatedWork W3047552631 @default.
- W4206104073 hasRelatedWork W3099386970 @default.
- W4206104073 hasRelatedWork W3174196512 @default.
- W4206104073 hasRelatedWork W4205415703 @default.
- W4206104073 hasRelatedWork W4206443144 @default.
- W4206104073 hasRelatedWork W4225984265 @default.
- W4206104073 hasRelatedWork W4308993660 @default.
- W4206104073 isParatext "false" @default.
- W4206104073 isRetracted "false" @default.
- W4206104073 workType "article" @default.