Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206121569> ?p ?o ?g. }
- W4206121569 endingPage "17" @default.
- W4206121569 startingPage "1" @default.
- W4206121569 abstract "Emotion recognition in conversation is one of the essential tasks of natural language processing. However, this task’s annotation data is insufficient since such data is hard to collect and annotate. Meanwhile, there is large-scale data for conversational generation, and this data does not need annotation manually. But, whether the vector space between different datasets is similar will be a problem. Therefore, we utilize a same dataset to train the conversational generator and the classifier, and transfer knowledge between them. In particular, we propose an Emotion Recognition with Conversational Generation Transfer (ERCGT) framework to model the interaction among utterances by transfer learning. First, we train a conversational generator. In the second step, a transfer learning model is used to transfer the knowledge of generator to the emotion recognition model. Empirical studies illustrate the effectiveness of the proposed framework over several strong baselines on three benchmark emotion classification datasets." @default.
- W4206121569 created "2022-01-26" @default.
- W4206121569 creator A5012794465 @default.
- W4206121569 creator A5018258384 @default.
- W4206121569 creator A5046345742 @default.
- W4206121569 creator A5075225222 @default.
- W4206121569 creator A5091337485 @default.
- W4206121569 date "2022-01-19" @default.
- W4206121569 modified "2023-09-27" @default.
- W4206121569 title "Emotion Recognition with Conversational Generation Transfer" @default.
- W4206121569 cites W1598251544 @default.
- W4206121569 cites W1973453096 @default.
- W4206121569 cites W2146334809 @default.
- W4206121569 cites W2166706824 @default.
- W4206121569 cites W2740550900 @default.
- W4206121569 cites W2805662932 @default.
- W4206121569 cites W2891359673 @default.
- W4206121569 cites W2952307697 @default.
- W4206121569 cites W2962854379 @default.
- W4206121569 cites W2963130397 @default.
- W4206121569 cites W2963686995 @default.
- W4206121569 cites W2963873807 @default.
- W4206121569 cites W2963879591 @default.
- W4206121569 cites W2964300796 @default.
- W4206121569 cites W2985882473 @default.
- W4206121569 cites W2997679291 @default.
- W4206121569 cites W2998369497 @default.
- W4206121569 cites W2998508934 @default.
- W4206121569 cites W3039444588 @default.
- W4206121569 cites W3106003309 @default.
- W4206121569 cites W3116376974 @default.
- W4206121569 doi "https://doi.org/10.1145/3494532" @default.
- W4206121569 hasPublicationYear "2022" @default.
- W4206121569 type Work @default.
- W4206121569 citedByCount "1" @default.
- W4206121569 countsByYear W42061215692023 @default.
- W4206121569 crossrefType "journal-article" @default.
- W4206121569 hasAuthorship W4206121569A5012794465 @default.
- W4206121569 hasAuthorship W4206121569A5018258384 @default.
- W4206121569 hasAuthorship W4206121569A5046345742 @default.
- W4206121569 hasAuthorship W4206121569A5075225222 @default.
- W4206121569 hasAuthorship W4206121569A5091337485 @default.
- W4206121569 hasConcept C119857082 @default.
- W4206121569 hasConcept C121332964 @default.
- W4206121569 hasConcept C13280743 @default.
- W4206121569 hasConcept C150899416 @default.
- W4206121569 hasConcept C154945302 @default.
- W4206121569 hasConcept C15744967 @default.
- W4206121569 hasConcept C162324750 @default.
- W4206121569 hasConcept C163258240 @default.
- W4206121569 hasConcept C185798385 @default.
- W4206121569 hasConcept C187736073 @default.
- W4206121569 hasConcept C204321447 @default.
- W4206121569 hasConcept C205649164 @default.
- W4206121569 hasConcept C2776321320 @default.
- W4206121569 hasConcept C2777200299 @default.
- W4206121569 hasConcept C2777438025 @default.
- W4206121569 hasConcept C2780451532 @default.
- W4206121569 hasConcept C2780992000 @default.
- W4206121569 hasConcept C28490314 @default.
- W4206121569 hasConcept C41008148 @default.
- W4206121569 hasConcept C46312422 @default.
- W4206121569 hasConcept C62520636 @default.
- W4206121569 hasConcept C95623464 @default.
- W4206121569 hasConceptScore W4206121569C119857082 @default.
- W4206121569 hasConceptScore W4206121569C121332964 @default.
- W4206121569 hasConceptScore W4206121569C13280743 @default.
- W4206121569 hasConceptScore W4206121569C150899416 @default.
- W4206121569 hasConceptScore W4206121569C154945302 @default.
- W4206121569 hasConceptScore W4206121569C15744967 @default.
- W4206121569 hasConceptScore W4206121569C162324750 @default.
- W4206121569 hasConceptScore W4206121569C163258240 @default.
- W4206121569 hasConceptScore W4206121569C185798385 @default.
- W4206121569 hasConceptScore W4206121569C187736073 @default.
- W4206121569 hasConceptScore W4206121569C204321447 @default.
- W4206121569 hasConceptScore W4206121569C205649164 @default.
- W4206121569 hasConceptScore W4206121569C2776321320 @default.
- W4206121569 hasConceptScore W4206121569C2777200299 @default.
- W4206121569 hasConceptScore W4206121569C2777438025 @default.
- W4206121569 hasConceptScore W4206121569C2780451532 @default.
- W4206121569 hasConceptScore W4206121569C2780992000 @default.
- W4206121569 hasConceptScore W4206121569C28490314 @default.
- W4206121569 hasConceptScore W4206121569C41008148 @default.
- W4206121569 hasConceptScore W4206121569C46312422 @default.
- W4206121569 hasConceptScore W4206121569C62520636 @default.
- W4206121569 hasConceptScore W4206121569C95623464 @default.
- W4206121569 hasFunder F4320321001 @default.
- W4206121569 hasIssue "4" @default.
- W4206121569 hasLocation W42061215691 @default.
- W4206121569 hasOpenAccess W4206121569 @default.
- W4206121569 hasPrimaryLocation W42061215691 @default.
- W4206121569 hasRelatedWork W2081647779 @default.
- W4206121569 hasRelatedWork W2954843021 @default.
- W4206121569 hasRelatedWork W2961085424 @default.
- W4206121569 hasRelatedWork W3018421652 @default.
- W4206121569 hasRelatedWork W38394648 @default.
- W4206121569 hasRelatedWork W4288040045 @default.
- W4206121569 hasRelatedWork W4308262314 @default.