Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206147254> ?p ?o ?g. }
- W4206147254 endingPage "3018" @default.
- W4206147254 startingPage "3008" @default.
- W4206147254 abstract "Wind turbines are usually exposed to dynamic and adverse environmental conditions, and faults on mechanical parts are major threats to the economic efficiency of wind farms. Condition monitoring and fault detection play important roles in the reliability of wind turbines. However, due to the dynamic characteristics and fluctuations of variables, precise modeling for representing the complex operation state of key components is still challenging. This study presents a data-driven fault detection method for generator bearing of wind turbines. A dual-stage attention-based recurrent neural network is first trained to model the normal behavior of generator bearing temperature. Based on long short-term memory, an input attention mechanism is specially designed to allocate the variable importances specific to each timeslot. Since the variable importance is distinct at different timeslots, the time-varying correlations among variables in wind turbines can be captured, and hence, the performance of variable estimation can be remarkably improved. In addition, this article focuses on the challenges faced by the practice of wind power industries, where the evolution rates of impending faults are usually unknown and distinct, and proposes a novel voting-based detection strategy. The proposed strategy conducts multiple processes to evaluate a potential fault from different perspectives and, hence, can guarantee the robustness and performance of fault detecting. Eventually, field supervisory control and data acquisition data from real wind farms are utilized for validation and extensive comparison studies verify the effectiveness of this proposed scheme." @default.
- W4206147254 created "2022-01-26" @default.
- W4206147254 creator A5008077761 @default.
- W4206147254 creator A5017718646 @default.
- W4206147254 creator A5062062955 @default.
- W4206147254 creator A5062534500 @default.
- W4206147254 date "2022-10-01" @default.
- W4206147254 modified "2023-09-29" @default.
- W4206147254 title "Fault Detection of Wind Turbine Generator Bearing Using Attention-Based Neural Networks and Voting-Based Strategy" @default.
- W4206147254 cites W1867461437 @default.
- W4206147254 cites W1986397616 @default.
- W4206147254 cites W1999218375 @default.
- W4206147254 cites W2009637664 @default.
- W4206147254 cites W2013082002 @default.
- W4206147254 cites W2047468395 @default.
- W4206147254 cites W2053767275 @default.
- W4206147254 cites W2064675550 @default.
- W4206147254 cites W2068309181 @default.
- W4206147254 cites W2110710005 @default.
- W4206147254 cites W2517756674 @default.
- W4206147254 cites W2523553285 @default.
- W4206147254 cites W2613328025 @default.
- W4206147254 cites W2750821222 @default.
- W4206147254 cites W2761148314 @default.
- W4206147254 cites W2792853279 @default.
- W4206147254 cites W2796090602 @default.
- W4206147254 cites W2809943878 @default.
- W4206147254 cites W2873996253 @default.
- W4206147254 cites W2887511588 @default.
- W4206147254 cites W2891236523 @default.
- W4206147254 cites W2897250207 @default.
- W4206147254 cites W2897534289 @default.
- W4206147254 cites W2904851779 @default.
- W4206147254 cites W2910440949 @default.
- W4206147254 cites W2926145291 @default.
- W4206147254 cites W2933233988 @default.
- W4206147254 cites W2997914572 @default.
- W4206147254 cites W3009961868 @default.
- W4206147254 cites W3017198169 @default.
- W4206147254 cites W3017705806 @default.
- W4206147254 cites W3045155079 @default.
- W4206147254 cites W3127452186 @default.
- W4206147254 cites W3139069477 @default.
- W4206147254 cites W3161975120 @default.
- W4206147254 doi "https://doi.org/10.1109/tmech.2021.3127213" @default.
- W4206147254 hasPublicationYear "2022" @default.
- W4206147254 type Work @default.
- W4206147254 citedByCount "12" @default.
- W4206147254 countsByYear W42061472542022 @default.
- W4206147254 countsByYear W42061472542023 @default.
- W4206147254 crossrefType "journal-article" @default.
- W4206147254 hasAuthorship W4206147254A5008077761 @default.
- W4206147254 hasAuthorship W4206147254A5017718646 @default.
- W4206147254 hasAuthorship W4206147254A5062062955 @default.
- W4206147254 hasAuthorship W4206147254A5062534500 @default.
- W4206147254 hasConcept C104317684 @default.
- W4206147254 hasConcept C119599485 @default.
- W4206147254 hasConcept C127313418 @default.
- W4206147254 hasConcept C127413603 @default.
- W4206147254 hasConcept C133731056 @default.
- W4206147254 hasConcept C134306372 @default.
- W4206147254 hasConcept C152745839 @default.
- W4206147254 hasConcept C154945302 @default.
- W4206147254 hasConcept C165205528 @default.
- W4206147254 hasConcept C172707124 @default.
- W4206147254 hasConcept C175551986 @default.
- W4206147254 hasConcept C182365436 @default.
- W4206147254 hasConcept C185592680 @default.
- W4206147254 hasConcept C200601418 @default.
- W4206147254 hasConcept C2775846686 @default.
- W4206147254 hasConcept C2778449969 @default.
- W4206147254 hasConcept C33923547 @default.
- W4206147254 hasConcept C41008148 @default.
- W4206147254 hasConcept C50644808 @default.
- W4206147254 hasConcept C55493867 @default.
- W4206147254 hasConcept C63479239 @default.
- W4206147254 hasConcept C78519656 @default.
- W4206147254 hasConcept C78600449 @default.
- W4206147254 hasConcept C79403827 @default.
- W4206147254 hasConceptScore W4206147254C104317684 @default.
- W4206147254 hasConceptScore W4206147254C119599485 @default.
- W4206147254 hasConceptScore W4206147254C127313418 @default.
- W4206147254 hasConceptScore W4206147254C127413603 @default.
- W4206147254 hasConceptScore W4206147254C133731056 @default.
- W4206147254 hasConceptScore W4206147254C134306372 @default.
- W4206147254 hasConceptScore W4206147254C152745839 @default.
- W4206147254 hasConceptScore W4206147254C154945302 @default.
- W4206147254 hasConceptScore W4206147254C165205528 @default.
- W4206147254 hasConceptScore W4206147254C172707124 @default.
- W4206147254 hasConceptScore W4206147254C175551986 @default.
- W4206147254 hasConceptScore W4206147254C182365436 @default.
- W4206147254 hasConceptScore W4206147254C185592680 @default.
- W4206147254 hasConceptScore W4206147254C200601418 @default.
- W4206147254 hasConceptScore W4206147254C2775846686 @default.
- W4206147254 hasConceptScore W4206147254C2778449969 @default.
- W4206147254 hasConceptScore W4206147254C33923547 @default.
- W4206147254 hasConceptScore W4206147254C41008148 @default.
- W4206147254 hasConceptScore W4206147254C50644808 @default.