Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206182026> ?p ?o ?g. }
- W4206182026 endingPage "e857" @default.
- W4206182026 startingPage "e857" @default.
- W4206182026 abstract "Software engineering is one of the most significant areas, which extensively used in educational and industrial fields. Software engineering education plays an essential role in keeping students up to date with software technologies, products, and processes that are commonly applied in the software industry. The software development project is one of the most important parts of the software engineering course, because it covers the practical side of the course. This type of project helps strengthening students' skills to collaborate in a team spirit to work on software projects. Software project involves the composition of software product and process parts. Software product part represents software deliverables at each phase of Software Development Life Cycle (SDLC) while software process part captures team activities and behaviors during SDLC. The low-expectation teams face challenges during different stages of software project. Consequently, predicting performance of such teams is one of the most important tasks for learning process in software engineering education. The early prediction of performance for low-expectation teams would help instructors to address difficulties and challenges related to such teams at earliest possible phases of software project to avoid project failure. Several studies attempted to early predict the performance for low-expectation teams at different phases of SDLC. This study introduces swarm intelligence -based model which essentially aims to improve the prediction performance for low-expectation teams at earliest possible phases of SDLC by implementing Particle Swarm Optimization-K Nearest Neighbours (PSO-KNN), and it attempts to reduce the number of selected software product and process features to reach higher accuracy with identifying less than 40 relevant features. Experiments were conducted on the Software Engineering Team Assessment and Prediction (SETAP) project dataset. The proposed model was compared with the related studies and the state-of-the-art Machine Learning (ML) classifiers: Sequential Minimal Optimization (SMO), Simple Linear Regression (SLR), Naïve Bayes (NB), Multilayer Perceptron (MLP), standard KNN, and J48. The proposed model provides superior results compared to the traditional ML classifiers and state-of-the-art studies in the investigated phases of software product and process development." @default.
- W4206182026 created "2022-01-25" @default.
- W4206182026 creator A5000519641 @default.
- W4206182026 creator A5016975835 @default.
- W4206182026 creator A5023882029 @default.
- W4206182026 creator A5035973614 @default.
- W4206182026 creator A5062333606 @default.
- W4206182026 date "2022-01-19" @default.
- W4206182026 modified "2023-09-24" @default.
- W4206182026 title "Swarm intelligence-based model for improving prediction performance of low-expectation teams in educational software engineering projects" @default.
- W4206182026 cites W1511271166 @default.
- W4206182026 cites W157299254 @default.
- W4206182026 cites W1786686177 @default.
- W4206182026 cites W1963535891 @default.
- W4206182026 cites W1970881937 @default.
- W4206182026 cites W1971362221 @default.
- W4206182026 cites W1982356933 @default.
- W4206182026 cites W1995346442 @default.
- W4206182026 cites W2026948260 @default.
- W4206182026 cites W2045345036 @default.
- W4206182026 cites W2049868504 @default.
- W4206182026 cites W2086145942 @default.
- W4206182026 cites W2106717332 @default.
- W4206182026 cites W2129473238 @default.
- W4206182026 cites W2153378020 @default.
- W4206182026 cites W2396084127 @default.
- W4206182026 cites W2560595264 @default.
- W4206182026 cites W2606436201 @default.
- W4206182026 cites W2763350515 @default.
- W4206182026 cites W2783786976 @default.
- W4206182026 cites W2794709523 @default.
- W4206182026 cites W2797602528 @default.
- W4206182026 cites W2801802177 @default.
- W4206182026 cites W2883489888 @default.
- W4206182026 cites W2888728157 @default.
- W4206182026 cites W2899614377 @default.
- W4206182026 cites W2903273348 @default.
- W4206182026 cites W2904960397 @default.
- W4206182026 cites W2907063067 @default.
- W4206182026 cites W2913052527 @default.
- W4206182026 cites W2934564097 @default.
- W4206182026 cites W2945163429 @default.
- W4206182026 cites W2960746948 @default.
- W4206182026 cites W2964586220 @default.
- W4206182026 cites W2968261567 @default.
- W4206182026 cites W2969655192 @default.
- W4206182026 cites W2977032761 @default.
- W4206182026 cites W2995979568 @default.
- W4206182026 cites W3000641104 @default.
- W4206182026 cites W3006194202 @default.
- W4206182026 cites W3009383300 @default.
- W4206182026 cites W3015349730 @default.
- W4206182026 cites W3015997807 @default.
- W4206182026 cites W3033783402 @default.
- W4206182026 cites W3041631435 @default.
- W4206182026 cites W3042802686 @default.
- W4206182026 cites W3044416185 @default.
- W4206182026 cites W3088767664 @default.
- W4206182026 cites W3093674982 @default.
- W4206182026 cites W3094809468 @default.
- W4206182026 cites W3100953442 @default.
- W4206182026 cites W3119513105 @default.
- W4206182026 cites W3120254517 @default.
- W4206182026 cites W3153077810 @default.
- W4206182026 cites W3203713416 @default.
- W4206182026 cites W4240963089 @default.
- W4206182026 cites W806202468 @default.
- W4206182026 doi "https://doi.org/10.7717/peerj-cs.857" @default.
- W4206182026 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35174274" @default.
- W4206182026 hasPublicationYear "2022" @default.
- W4206182026 type Work @default.
- W4206182026 citedByCount "1" @default.
- W4206182026 countsByYear W42061820262023 @default.
- W4206182026 crossrefType "journal-article" @default.
- W4206182026 hasAuthorship W4206182026A5000519641 @default.
- W4206182026 hasAuthorship W4206182026A5016975835 @default.
- W4206182026 hasAuthorship W4206182026A5023882029 @default.
- W4206182026 hasAuthorship W4206182026A5035973614 @default.
- W4206182026 hasAuthorship W4206182026A5062333606 @default.
- W4206182026 hasBestOaLocation W42061820261 @default.
- W4206182026 hasConcept C115903868 @default.
- W4206182026 hasConcept C120617098 @default.
- W4206182026 hasConcept C180152950 @default.
- W4206182026 hasConcept C182500959 @default.
- W4206182026 hasConcept C186846655 @default.
- W4206182026 hasConcept C199360897 @default.
- W4206182026 hasConcept C201515116 @default.
- W4206182026 hasConcept C2777904410 @default.
- W4206182026 hasConcept C39890963 @default.
- W4206182026 hasConcept C40919944 @default.
- W4206182026 hasConcept C41008148 @default.
- W4206182026 hasConcept C42669973 @default.
- W4206182026 hasConcept C44416564 @default.
- W4206182026 hasConcept C51845450 @default.
- W4206182026 hasConcept C529173508 @default.
- W4206182026 hasConcept C74579156 @default.
- W4206182026 hasConceptScore W4206182026C115903868 @default.
- W4206182026 hasConceptScore W4206182026C120617098 @default.