Matches in SemOpenAlex for { <https://semopenalex.org/work/W4206182892> ?p ?o ?g. }
- W4206182892 endingPage "59611" @default.
- W4206182892 startingPage "59597" @default.
- W4206182892 abstract "The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes." @default.
- W4206182892 created "2022-01-26" @default.
- W4206182892 creator A5054013407 @default.
- W4206182892 creator A5065103414 @default.
- W4206182892 date "2021-01-01" @default.
- W4206182892 modified "2023-10-17" @default.
- W4206182892 title "Deep Learning for SARS COV-2 Genome Sequences" @default.
- W4206182892 cites W1019830208 @default.
- W4206182892 cites W1600744878 @default.
- W4206182892 cites W2002261403 @default.
- W4206182892 cites W2064675550 @default.
- W4206182892 cites W2079735306 @default.
- W4206182892 cites W2103441770 @default.
- W4206182892 cites W2111173859 @default.
- W4206182892 cites W2134157280 @default.
- W4206182892 cites W2162836426 @default.
- W4206182892 cites W2164777277 @default.
- W4206182892 cites W2167277498 @default.
- W4206182892 cites W2198606573 @default.
- W4206182892 cites W2270470215 @default.
- W4206182892 cites W2301095666 @default.
- W4206182892 cites W2336509392 @default.
- W4206182892 cites W2343416635 @default.
- W4206182892 cites W2433743436 @default.
- W4206182892 cites W2620760558 @default.
- W4206182892 cites W2761430568 @default.
- W4206182892 cites W2781487490 @default.
- W4206182892 cites W2789876780 @default.
- W4206182892 cites W2807818025 @default.
- W4206182892 cites W2808548605 @default.
- W4206182892 cites W2884001105 @default.
- W4206182892 cites W2901218091 @default.
- W4206182892 cites W2904384071 @default.
- W4206182892 cites W2950609999 @default.
- W4206182892 cites W2962785940 @default.
- W4206182892 cites W2962933419 @default.
- W4206182892 cites W2963067130 @default.
- W4206182892 cites W2963921497 @default.
- W4206182892 cites W2964026782 @default.
- W4206182892 cites W2966164316 @default.
- W4206182892 cites W2971635962 @default.
- W4206182892 cites W2971852873 @default.
- W4206182892 cites W2976855161 @default.
- W4206182892 cites W2983800303 @default.
- W4206182892 cites W2984726926 @default.
- W4206182892 cites W2996887063 @default.
- W4206182892 cites W3004318991 @default.
- W4206182892 cites W3005770759 @default.
- W4206182892 cites W3007075806 @default.
- W4206182892 cites W3012310159 @default.
- W4206182892 cites W3012751338 @default.
- W4206182892 cites W3013985547 @default.
- W4206182892 cites W3019119825 @default.
- W4206182892 cites W3032165660 @default.
- W4206182892 cites W3034813768 @default.
- W4206182892 cites W3120505451 @default.
- W4206182892 cites W3124959131 @default.
- W4206182892 cites W4236236547 @default.
- W4206182892 cites W4239955583 @default.
- W4206182892 cites W4248083651 @default.
- W4206182892 cites W429766147 @default.
- W4206182892 cites W4300958603 @default.
- W4206182892 doi "https://doi.org/10.1109/access.2021.3073728" @default.
- W4206182892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34812391" @default.
- W4206182892 hasPublicationYear "2021" @default.
- W4206182892 type Work @default.
- W4206182892 citedByCount "21" @default.
- W4206182892 countsByYear W42061828922021 @default.
- W4206182892 countsByYear W42061828922022 @default.
- W4206182892 countsByYear W42061828922023 @default.
- W4206182892 crossrefType "journal-article" @default.
- W4206182892 hasAuthorship W4206182892A5054013407 @default.
- W4206182892 hasAuthorship W4206182892A5065103414 @default.
- W4206182892 hasBestOaLocation W42061828921 @default.
- W4206182892 hasConcept C108583219 @default.
- W4206182892 hasConcept C112705442 @default.
- W4206182892 hasConcept C119857082 @default.
- W4206182892 hasConcept C126322002 @default.
- W4206182892 hasConcept C147168706 @default.
- W4206182892 hasConcept C153180895 @default.
- W4206182892 hasConcept C154945302 @default.
- W4206182892 hasConcept C2524010 @default.
- W4206182892 hasConcept C2778724333 @default.
- W4206182892 hasConcept C2779134260 @default.
- W4206182892 hasConcept C3007834351 @default.
- W4206182892 hasConcept C3008058167 @default.
- W4206182892 hasConcept C3020225094 @default.
- W4206182892 hasConcept C33923547 @default.
- W4206182892 hasConcept C41008148 @default.
- W4206182892 hasConcept C50644808 @default.
- W4206182892 hasConcept C524204448 @default.
- W4206182892 hasConcept C58471807 @default.
- W4206182892 hasConcept C60644358 @default.
- W4206182892 hasConcept C70721500 @default.
- W4206182892 hasConcept C71924100 @default.
- W4206182892 hasConcept C81363708 @default.
- W4206182892 hasConcept C86803240 @default.
- W4206182892 hasConceptScore W4206182892C108583219 @default.